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Abstract

We develop a unified framework for optimal management of public portfolios for a general
class of macro-finance models imposing very few restrictions on households’ risk and liquid-
ity preferences or market structure for financial assets. Small-noise expansions to first-order
conditions for a Ramsey plan can be reorganized into a formula for an optimal portfolio of
government financial assets that isolates four motives balanced at an optimum: (1) hedging
interest rate risk, (2) hedging primary deficit risk, (3) supplying liquid assets, and (4) inter-
nalizing equilibrium effects of public policies on financial asset prices. We directly calibrate
quantitative measures of these four motives. Hedging interest rate risk plays a dominant role
in shaping an optimal portfolio of financial assets for the U.S. federal government.
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1 Introduction

This paper isolates and quantifies motives that shape optimal government portfolios of finan-

cial assets. We do this for a class of representative household general equilibrium models. This

class of models includes popular specifications of households’ risk and liquidity preferences,

sets of tradable securities, as well as restrictions that can limit access to some markets. These

models have been used to explain asset price anomalies as well as price responses to changes

in the supply of government debt. For this general class of models, we expand the “sufficient

statistics” approach popular in public finance (see Chetty (2009)) and derive formulas for op-

timal portfolios that summarize the normative prescriptions using a small number of empirical

moments. When applied to U.S. data, we find that the optimal debt portfolio is largely de-

scribed by exponentially declining weights on longer maturities, and it needs little rebalancing

over time.

Our framework consists of domestic households, foreign investors, and a benevolent gov-

ernment. Households are identical. They derive utility from consumption, leisure, and value

liquidity services provided by a subset of securities. Our formulation of household prefer-

ences includes a variety of models studied in the literature – Ai and Bansal (2018) class of

recursive preferences, discount factor shocks of Albuquerque, Eichenbaum, Luo, and Rebelo

(2016), and also imperfect substitutability of financial assets in the spirit of Krishnamurthy and

Vissing-Jorgensen (2012). Foreign investors are fully described by a set of demand functions

for various securities. A benevolent government planner inherits representative agent’s pref-

erences and chooses a history contingent sequence of taxes and portfolios under commitment.

We also allow for a variety of market structures by specifying which securities are traded by

households, foreign investors and the government. Our market structures is general enough

to encompass not only the classical complete markets model but also several types incomplete

markets settings that have been used in applied work.

The planner faces costs from adjusting taxes and from altering the supply of securities

that provide liquidity services, and internalizes the effects of its actions on asset prices. The

planner uses returns on the securities it trades to smooth these costs across time and states.

Private agents’ first-order conditions for supplying labor and for purchasing securities traded

by the government are “implementability” restrictions on allocations available to the planner.

Combining these conditions with government budget constraints and small-noise expansions to

the planner’s first-order conditions yields a system of equations that determines the government

portfolio.

The economic forces that drive the optimal composition are made transparent by decom-
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posing the expression for the optimal portfolio in four intuitive terms: (i) interest rate risk,

which arises from fluctuations in the current and future risk-free rates; (ii) primary surplus

risk that arises from movements in the primary surplus; (iii) liquidity risk that captures the

movements in households marginal benefits from liquidity services; and (iv) price impact that

measures the effect on asset prices due to government’s trades.

We show that all four terms are expressed in terms of a small number of moments that are

easy to empirically measure. These sufficient statistics take the form of covariances such as

the covariance of returns with each other, with interest rates, with deficits, and with liquidity

premia, as well as elasticities such as the elasticity of tax revenues with respect to tax rates and

elasticities of bond prices with respect to bond supply. Relative to the classical portfolio theory

applied to the individual investor, neither risk aversion nor Sharpe ratios or betas appear in

our formula. This is because the government is benevolent. To the extent it can trade the same

securities as the households, its attitude to the risk-return trade-off must be the same as that

of households, and these considerations disappear from its calculation of optimal portfolios.

The first term describes how the government can structure its portfolio to minimize risk

from fluctuations in future interest rates. These movements are costly when the government

needs to roll over its maturing debt. In general, the portfolio that hedges interest rate risk

depends on the expected timing of deficits and how holding period returns comove with the

yield curve. However, in a special case, when primitives are stationary and the government

trades zero-coupon bonds, we show that the portfolio that hedges interest rate risk is straight-

forward. The government allocates a geometrically declining share of its portfolio in debts of

longer maturities. Moreover, these weights only depend on the long-run average of the rate of

return minus the long-run growth rate; so, it requires no rebalancing in response to temporary

fluctuations.

The extent to which the government should depart from full hedging of interest rate risk

depends on how well government bonds can hedge movements in primary deficits and liquidity.

The second and third terms capture these considerations. Movements in primary surplus arise

because of changes in tax rates and because of shocks that are exogenous to policy. We show

that the portfolio that hedges primary surplus risk is determined by the covariance of holding

period returns with the variation in primary deficits independent of fiscal policy.

Households value liquidity services, and therefore, increasing the supply of a security which

has high marginal benefits from liquidity is welfare improving. However, as with taxes, move-

ments in the marginal benefits of liquidity are costly. We show that the liquidity risk term is

determined by a measure of excess liquidity premium and how holding period returns covary
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with the liquidity premia on short-maturity debt. Moreover, our formula says that the covari-

ances of primary surplus with returns and covariances of liquidity premium with returns need

to be scaled by the inverse covariances of holding period returns.

We use U.S. data to quantify the above-mentioned covariances using a parsimonious factor

structure. We find that the shape of the overall portfolio is largely driven by the motive to

hedge interest rate risk. These findings reflect the patterns in the U.S. data that covariances

of deficits (or liquidity premia) with returns are small relative to the covariances of returns

with each other. Furthermore, the portfolio that hedges primary surplus risk largely offsets the

portfolio that hedges liquidity risk. Thus, U.S. debts appear to be a poor hedge for primary

deficit and liquidity risks. Compared to observed U.S. debt portfolios, we find the optimal

portfolio has a similar shape but a much longer duration. In addition to its geometrically-

declining-weights shape, we also find that the optimal portfolio requires little rebalancing over

time.

A second difference from classical portfolio theory is that the government, unlike a private

investor, internalizes the effects of its trades on asset prices. The more the planner has to

rebalance a price sensitive security, the more it needs to adjust taxes to raise the same amount

of resources. We show that the these considerations are captured by the elasticities of bond

prices to supply; and they have been extensively measured by segmented markets literature

using evidence from quantitative easing policies. Using these estimates, we find that that the

presence of price impact matters along a transition path but has a relatively small bearing on

the stationary portfolio. The reason for this goes back to our previous finding that portfolio

is largely shaped by by interest rate risk considerations and the portfolio that hedges interest

rate risk requires little rebalancing.

Our findings contrasts to a large macro literature on optimal term structure of government

debt that goes back to the seminal work of Angeletos (2002) and Buera and Nicolini (2004).1

In studying a canonical neoclassical growth model, a typical finding in that literature is that in

the government should issue long-term debt valued at tens or even hundreds times GDP while

simultaneously taking an offsetting short position in short-term debt of a similar magnitudes.

The optimal portfolio massively rebalances after aggregate shocks. Furthermore, the compo-

sition of an optimal portfolio is very sensitive to the menu of traded maturities. In contrast,

we find moderate portfolios which are fairly stable over time. We show that the difference in

findings is driven by counterfactual implications of the neoclassical growth model regarding

the behavior of holding period returns on government debts. Standard parameterizations im-

1Other examples of such findings are in Farhi (2010); Faraglia, Marcet, Oikonomou, and Scott (2018); Lustig,
Sleet, and Yeltekin (2008); Debortoli, Nunes, and Yared (2017)
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ply that such returns are very smooth and highly correlated with fluctuations in the primary

deficit, and as a result also with each other across maturities. This allows the government

to hedge its shocks very well but it needs to take extreme debt positions to do so. Viewed

through the lenses of our formula, such models imply that the primary surplus risk hedging

term is very large and time-varying. In contrast, we show that in the U.S. data it is very small

and stable.

2 Baseline environment

Timing and shocks. Time is discrete and infinite. Exogenous disturbances in period t are

summarized by state st ∈ S ⊂ RS . We assume that the state space S is compact, count-

able but can be finite or infinite. The initial state s0 is predetermined. History of shocks is

st = (s0, ...., st). We use Pr (st) and Pr
(
st|sT

)
for t > T to denote probabilities of st condi-

tional on information in period 0 and sT respectively. Similarly, we use Pr
(
st|sT

)
for t > T

for the probability of st occurring conditional on sT , with convention that Pr
(
st|sT

)
= 0

if st does not contain sT . We write st � sT if st contains sT . A value of variable x in

state st is denoted by xt
(
st
)

or simply xt if it is clear from the context what st we refer

to. Similarly, we use interchangeably notation Estxt+k or Etxt+s for conditional expectation∑
st+k Pr

(
st+k|st

)
xt+k

(
st+k

)
.

Securities. We impose minimal structure on asset markets. To make government portfolio

problem interesting, we assume that there exist at least two securities, but the total number of

securities is arbitrary otherwise and may be finite or infinite. A security i is characterized by

an exogenous stream of payments
{
dit
}
t
, which can be deterministic or stochastic; the set of

states in which it can be traded; and the set of economic agents who can trade that security.

Without loss of generality, we assume that dit
(
st
)
⊂ st for all i, that is that state st includes

realizations of payments for all securities. The net supply of security i in period t is denoted

by Bit, and it can be deterministic or stochastic.

The only restriction we impose on the market structure is that there exists a one period

government bond, that we denote with superscript rf. This security is a pure discount bond

issued by the government in period t that pays drft+1 = 1 in all states in period t+ 1.

Price of security i is denoted by qit. If security i cannot be traded by any agent in that

period, we set qit = 0. The return of security i, that can be traded in period t− 1, is defined by

Rit ≡
(
dit + qit

)
/qit−1. Excess return is defined as rit ≡ Rit − R

rf
t , where Rrft is the return on

a one period government bond issued in period t − 1. Note that the definition of government
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bond implies that Rrft = 1/qrft−1, so that Rrft is known at period t− 1.

Economic agents. There are three types of economic agents: the government, households,

and foreign investors. The government needs to finance an exogenous stream of expenditures

Gt. To this end, it collects tax revenues and trades securities. To collect tax revenues, it

imposes a proportional tax τ t on output Yt. Government’s holdings of securities are denoted

by
{
Bi
t

}
i
. We write the government budget constraint as

Gt +
∑
i

qitB
i
t = τ tYt +

∑
i

(
qit + dit

)
Bi
t−1. (1)

To simplify notation, we do not distinguish explicitly in equation (1) between securities that

the government can and cannot hold period t and simply sum over all securities i. Implicitly,

we set Bi
t = 0 for all securities that the government cannot hold in period t. Initial portfolio

of government securities is
{
Bi
}
−1
. We use Xt ≡ Gt − τ tYt to denote the primary deficit.

There is a unit measure of identical households. Each household produces output yt, pays

taxes, trades securities, and consumes consumption good ct. Household’s budget constraint is

ct +
∑
i

qitb
i
t = (1− τ t) yt +

∑
i

(
qit + dit

)
bit−1. (2)

Household preferences in period are defined recursively via

Vt = Ut
(
ct, yt,

{
qitb

i
t

}
i

)
+ βWt (Vt+1) , (3)

where Ut is the utility function that may depend on st and Wt is a functional that maps

t+ 1 measurable random variables to real numbers. We assume that Ut is twice continuously

differentiable in all arguments, strictly increasing in ct and decreasing in yt; Wt is twice con-

tinuously differentiable and strictly increasing, increasing in first and second order stochastic

dominance,2 Wt (X) = X for any time-t measurable random variable. Households choose(
c,y,

{
bi
}
i

)
to solve

max
c,y,{bi}i

V0 (4)

subject to (2) and the initial conditions
{
bi−1

}
i
. We use βt Pr

(
st
)
Mt

(
st
)

to denote the La-

grange multiplier on budget constraint (2) in state st.

This specification of household problem includes a variety of models of asset pricing and

bond demands considered in the literature. The functional Wt is taken from work of Ai and

2In other words, Wt

(
X1
t+1

)
≥ Wt

(
X2
t+1

)
whenever random variable X1

t+1 first- or second-order stochastically
dominates X2

t+1.
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Bansal (2018) who show that it incorporates a wide variety of models considered in the as-

set pricing literature: the recursive utility of Kreps and Porteus (1978) and Epstein and Zin

(1989); the variational preferences of Maccheroni, Marinacci, and Rustichini (2006a), Mac-

cheroni, Marinacci, and Rustichini (2006b); the multiplier preferences of Hansen and Sargent

(2008) and Strzalecki (2011); the second-order expected utility of Ergin and Gul (2009); the

smooth ambiguity preferences of Klibanoff, Marinacci, and Mukerji (2005), Klibanoff, Mari-

nacci, and Mukerji (2009); the disappointment aversion preference of Gul (1991); the recursive

smooth ambiguity preference of Hayashi and Miao (2011). Moreover, by relaxing the differ-

entiability assumption on Wt, one can extend them to the maxmin expected utility of Gilboa

and Schmeidler (1989), Epstein and Schneider (2003).

Similarly, specifications of Ut allows for both preference shocks in the spirit of Albuquerque,

Eichenbaum, Luo, and Rebelo (2016) or imperfect substitutability of financial assets in the

spirit of Krishnamurthy and Vissing-Jorgensen (2012). “Securities in the utility function”

specification of Ut can be interpreted as an indirect utility resulting from frictions in asset

markets. Suppose, for example, that the primitive utility function of the household Ũt (ct, yt)

does not depend on securities directly, but households cannot trade some security j. The

households maximize their preferences defined by utility Ũt function subject to the budget

constraint (1) and an additional constraint qjt b
j
t = 0. This problem equivalently can be written

as maximizing preferences defined by utility function Ut ≡ Ũt + ηtq
i
tb
i
t subject to the budget

constraint (1), where ηt is proportional to the Lagrange multiplier this additional no-trade

constraint.3 In a similar way one can incorporate borrowing constraints, ”bonds-in-advance”

liquidity services provided by government-issued securities, etc.

Our analysis below will be substantially simplified if we abstract from income effects on

labor supply. To this end, we assume that utility function can be represented as

Ut = Ut

(
ct −

(yt/θt)
1+1/γt

1 + 1/γt
,
{
qitb

i
t

}
i

)
, (5)

where θt and γt are some (potentially stochastic) positive variables bounded away from zero.

Using the consumption-leisure optimal choice of the household, we can represent a household’s

pre-tax earnings as

ln yt = γt ln (1− τ t) + (1 + γt) ln θt.

3To be able to write Ut in this form, the multiplier on constraint qjt b
j
t = 0 should be defined as

βtηt
(
st
)

∂V0

∂V1(s1)
× ... × ∂Vt−1(st−1)

∂Vt(st)
, where ∂V0

∂V1(s1)
× ... × ∂Vt−1(st−1)

∂Vt(st)
is evaluated at the optimum. With

standard time separable preferences, we simply have ∂V0

∂V1(s1)
× ...× ∂Vt−1(st−1)

∂Vt(st)
= Pr

(
st
)
.
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Thus, households earnings are function of tax rate τ t, earning elasticity γt, and all other shocks

that are captured by variable θt.

Finally, the foreign investors are specified by a set of time-t measurable demand functions

Di
t

({
qi
}
i

)
for each security i. These functions are twice continuously differentiable, and can be

stochastic and depend on st. This specification incorporates a variety of different specifications,

such as closed economy (Di
t are inelastic with Di

t = 0 for all i, t), small open economy (Di
t are

perfectly elastic), noise traders in the spirit of Kyle (1985), or segmented markets in the spirit

of Greenwood and Vayanos (2014).

Definition 1. For given initial conditions
{
bi−1, B

i
−1

}
i
, a competitive equilibrium is a collection(

τ , c,y,Y,
{
bi,Bi,qi

}
i

)
such that (i)

(
c,y,

{
bi
}
i

)
solves (4), (ii)

(
τ ,Y,

{
qi,Bi

}
i

)
satisfies

(1), (iii) y = Y and bi + Bi + Di = Bi for all i.

3 Optimal public portfolios

Our paper focuses on the analysis of the optimal structure of government portfolio
{
Bi
t

}
i
chosen

by a benevolent government planner under commitment. Thus, the planner maximizes the

household utility V0 and chooses policy variables
(
τ ,
{
Bi
t

}
i

)
such that

(
τ , c,y,Y,

{
bi,Bi,qi

}
i

)
is a competitive equilibrium. In this section, we use small-noise approximations to the planner’s

optimality conditions to characterize the optimal portfolio.

3.1 Perturbations and approximations

Before we go into specific analysis, it is useful to give a broad overview of our approach.

Take any competitive equilibrium
(
τ , c,y,Y,

{
bi,Bi,qi

}
i

)
. Suppose that the government

decides to slightly perturb its portfolio of securities after some history. For this perturba-

tion to be feasible, that is, satisfy budget constraints, the government would need to ad-

just taxes τ as well. We parameterize the size of this perturbation by parameter ε and use

notation
(
τ ε, cε,yε,Yε,

{
biε,B

i
ε,q

i
ε

}
i

)
to denote the competitive equilibrium under the per-

turbed policy. For any equilibrium variable xt we use notation ∂εxt denote the derivative

∂εxt ≡ limε→0 (xt,ε − xt) /ε.
Welfare effect from this perturbation as the size of the perturbation goes to zero is, due to
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the envelope theorem, given by

∂εV0 =
∞∑
t=0

∑
st

βtMt

(
st
) [
−Yt

(
st
)
∂ετ t

(
st
)
−
∑
i

(
bit
(
st
)
− bit−1

(
st−1

))
∂εq

i
t

(
st
)]

(6)

+
∞∑
t=0

∑
st

βt
∂V0

∂V1 (s1)
× ...×

∂Vt−1

(
st−1

)
∂Vt (st)

∂Ut
(
st
)

∂
(
qitb

i
t

) bit (st) ∂εqit (st) .
The main take away from this equation is that the welfare effect of the perturbation depends

only on objects that are directly known in equilibrium, such as
(
M,Y,

{
bi
}
i

)
, and on tax and

price responses ∂ετ and
{
∂εq

i
}
i
. This significantly simplifies our analysis. As long as such

tax and price responses can be inferred from the data, one does not need to take a strong

stand on the specific functional forms for household’s preferences or a specific mechanism that

determines asset prices.

If the government’s portfolio in the competitive equilibrium is optimal, then this pertur-

bation cannot increase welfare, so we should have ∂εV0 ≤ 0. By considering the opposite

perturbation with parameter −ε, we then establish that optimality requires

∂εV0 = 0. (7)

To connect this condition back to the optimal government portfolio we use the government’s

budget. Applying the perturbation to the budget constraint yields

∂ε (τ tYt)−
∑
i

∂εq
i
t

(
Bi
t −Bi

t−1

)
=
∑
i

qit∂εB
i
t −
∑
i

(
qit + dit

)
∂εB

i
t−1. (8)

Combining budget identity (8) with the optimality condition (7) one can establish conditions

that the optimal portfolio must satisfy.

There are two difficulties that we need to overcome to make this approach operational. The

first difficulty comes from the fact that the mapping between the optimality condition (7) and

the government budget constraint (8) is, in general, non-linear and complicated. The second

challenge is that responses ∂ετ and
{
∂εq

i
}
i

would depend on a specific perturbation ε one

considers. Since there are infinite number of different perturbations, in principle, one would

need to know infinite number of possible tax and price responses. This is not very practical.

We overcome both challenges by developing a particular class of second-order expansions of

equilibrium variables. Our approximations techniques build on the ideas used in asset pricing

literature and computational economics, such as Samuelson (1970), Devereux and Sutherland

(2011), Schmitt-Grohe and Uribe (2004), Bhandari, Evans, Golosov, and Sargent (2021). Fix

any state sT . Without loss of generality, we can write vector st ≥ sT as

st = ET st + εt ≡ s̄t + εt,

8



where ET εt = 0. Consider a sequence of stochastic processes, parameterized by scalar σ ≥ 0,

defined as

st (σ) = s̄t + σεt.

Here σ = 0 corresponds to a deterministic economy in which all uncertainty is shut down after

state sT . Let xt (σ) be any equilibrium variable in the σ-economy. We use second order Taylor

expansions of equilibrium conditions with respect to σ around σ = 0 and use ”'” sign to

denote any relationship that hold with equality up to the order O
(
σ3
)
. We use x̄t, ∂σxt, ∂σσxt

to denote zeroth, first and second order terms in expansion, so that in this notation

xt (σ) ' x̄t + ∂σxt +
1

2
∂σσxt.

Implicitly, throughout our analysis we assume that equilibrium is sufficiently well-behaved.

In particular, we assume that perturbations ε, and −ε are feasible for small ε; there is a unique

equilibrium for each ε; and the equilibrium manifold is smooth, so that the limits as ε→ 0 are

well defined. Similarly, we assume that equilibrium is smooth and unique in σ for small values

of this parameters, and that present value of government constraint at each state is finite. We

call such economies regular. While it would be interesting to explore sufficient conditions for

the existence of regular equilibria, that would require imposing additional structure on model’s

primitives that would distract from the main focus of the paper, and therefore we leave such

extensions to future work.

3.2 Tax revenue elasticities and liquidity premium

There are two objects that will appear frequently in our analysis. The first one is tax revenue

elasticity, that we denote by ξt, and define by

ξt ≡
∂ ln (τ tYt)

∂ ln τ t
= 1− γt

τ t
1− τ t

.

It provides a measure of tax distortions. When ξt = 1, the output does not respond to tax

rates and there is no distortions. More generally, 1 − ξt measures the deadweight losses from

transferring resources between the government and the households. For our analysis, we will

often require to know by how much the government needs to increase (or decrease) tax rates

in order to raise (or return) 1 unit of resources for households. It is easy to verify that this

value is given by 1
ξtYt

.

The second object we will use is what we call liquidity premium or liquidity wedge for

security i, that we denote by ait and define by

1− ait ≡ Et
βMt+1

Mt
Rit+1. (9)
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To get an intuition for this definition, consider first any security that households can trade

freely and that does not give them any direct utility benefit. The consumer optimality con-

dition with respect to this security is 1 = Et βMt+1

Mt
Rit+1 and therefore the liquidity premium

is zero. Therefore, ait for any security i is a measure of additional benefits or costs that

this security carries beyond transferring resources between periods. In the data, returns on

government-issued debt is often lower than returns on debt issues by private sector, and one

common explanation for this phenomenon is government-issued bonds provides additional liq-

uidity services. Through the lens of our definition, under this explanation private debt carries

no liquidity premium, while public debt has positive liquidity premium.

4 Optimal public portfolios in a small open economy

As equation (7) makes it clear, two types of responses play an important role in determining

optimal policy, the tax response ∂ετ and the price response
{
∂εq

i
}
i
. It will be instructive to

consider first the case in which price response is always zero, as would be in the case of a small

open economy. Many techniques and insights developed in this case will continue to hold more

generally, but the arguments are be simpler and more transparent.

To build the intuition behind forces that determine optimal public portfolio, it is useful to

start with the following thought experiment. Suppose that in period T, in some state sT , the

government reduces tax rates to lower its revenues by ε dollars. To offset the revenue fall, the

government also sells ε dollars of security j. In period T + 1 it buys back the same quantity of

security that it sold in previous period, and adjusts tax rates to satisfy its budget constraint

in period T + 1.

Consider the implication of this transaction on tax rates for a small ε. Reducing revenues by

ε dollars requires lowering taxes by ε
YT ξT

and selling ε

qjT
units of security j. Each unit of bond

sold has djT+1 opportunity cost in terms of dividends and qjT+1 units of resources required

to buy it back in period T + 1. Therefore, in period T + 1 taxes need to be increased to

raise
qjT+1+djT+1

qjT
ε units of resources or tax rates would need to increase by RjT+1

ε
YT+1ξT+1

. No

additional tax adjustments are needed in any other period and, therefore, the welfare impact

of this perturbation is

∂εV0

βT Pr (sT )MT (sT )
=

1

ξT
− ET

βMT+1

MT
RjT+1

1

ξT+1

(10)

=

{(
1

ξT
− 1

)
− ET

βMT+1

MT
RjT+1

(
1

ξT+1

− 1

)}
+ ajT ,

where in the second line we use the definition of liquidity wedge (9). All period T variables on
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the right hand size are a function of sT that we omitted for brevity.

The first line show that welfare impact of this transaction is intimitately tied to the tax

revenue elasticity. This transaction transfers 1 unit of resources from period T + 1 to period

T with a stochastic return RjT+1. Increase in welfare in period T from more resources is given

by 1
ξT

, while decrease in period T + 1 is given by RjT+1
1

ξT+1
. To discount the future uncertain

reduction of resources, the benevolent government uses households shadow stochastic discount

factor
βMT+1

MT
.

The second equation separates this welfare effect into welfare impact from deadweight

losses
(

1
ξt
− 1
)

and from liquidity premium ajt . For concreteness, suppose that security j is a

government bond (so that selling it means that the government issues more debt) and that

it has positive liquidity premium, ajT > 0. If taxes are not distortionary, or when ξt = 1 for

all t, then ∂εV0
βT Pr(sT )MT (sT )

= ajT > 0, so issuing more debt with positive liquidity premium

is welfare improving. In the optimum, the government should be issuing enough debt to

satiate household’s demand for it and bring the liqudity premium to zero. When taxes are

distortionary, issuing more debt in period T entails lower tax rates and deadweight losses(
1
ξT
− 1
)
, and higher deadweight losses RjT+1

(
1

ξT+1
− 1
)

in period T + 1. The first two terms

in the second line of equation (10) shows these two effects.

The focus of our analysis is on the optimal composition of the portfolio of government’s

securities holdings. Such portolio can be analyzed by considering a transaction in which the

government sells security j in any period T and simultaneously conducts the opposite offsetting

transaction with another security. Without loss of generality, we can set the offsetting security

to be the one period government bond. In portfolio is optimal, neither such transaction, nor the

opposite transaction that buys security j financed by selling a one period bond can increase

welfare. Therefore, combining equation (10) for security j and for rf, and setting the net

welfare effect to zero, we obtain

ajT − a
rf
T = covT

(
βMT+1

MT
riT+1,

(
ξT+1

)−1

ET
(
ξT+1

)−1

)
.

To the second order of approximation, this can be written as (see appendix)

covT

(
ln ξT+1, r

j
T+1

)
'
arfT − a

j
T

1− arfT
RrfT+1. (11)

It is instructive to compare this formula to its analogue in the classical portfolio theory

applied to individual investor. In the classical portfolio theory, the investor chooses portfolios

so that covariance of excess returns with her labor earnings is equalized to some measure of
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covariance of those returns with broad market index adjusted by investor’s risk aversion (see,

e.g. Viceira (2001)). The analogue of investor’s labor earnings in our problem are deadweight

losses ξT+1, but that’s where the similarly ends between the two formulas. Neither risk aversion,

nor assets Sharpe ratios or betas appear in formula (11). Instead, the covariance of deadweight

losses and returns is equalized to a measure that is proportional to the excess liquidity premium

that asset j pays over the government risk free bond, ajT − a
rf
T .

To understand the intuition for this result, it is useful to first consider the case when

households can freely trade both assets without any direct utility benefits, so that their liquidity

premia are zero. In this case, equation (11) implies that the government wants to choose a

portfolio that hedgees fluctuation in deadweight losses by minimizing co-movement between

ξT+1 and rjT+1. There is no traditional “risk-return” consideration, captured by risk aversion

and covariance of returns for asset j with the broad market index, that are central to the

classical portfolio theory. Since the government is benevolent and can trade the same assets that

households do, its attitude to the risk-return trade-off must be the same as that of households.

Trading an asset with them cannot increase welfare simply because its return appears to be

high relative to risk, since that requires households to hold the opposite view to be willing to

be a counter-party for government’s transaction.

This logic breaks down if households cannot trade these two assets, or when they provide

additional liquidity benefits. Equation (11) shows that the government wants to equalize

covariance of deadweight losses and excess returns to a measure of liquidity wedge, given by

the right hand side of (11). If taxes are not distortionary, then ln ξt = 0 for all t, in which

case optimal portfolio simply eliminates excess liquidity premium on all assets the government

can trade. When taxes are distortionary, this consideration is offset by additional risk to

deadweight losses that such assets carry.

Finally, consider a generalization of the perturbation considered so far. Suppose that the

government rolls over, using the one period bond, the excess return it obtained in period T + 1

for k more periods and then adjusts taxes in period T + 1 + k to return (or finance) these

resources. Using the same arguments as before, it is easy to obtain a generalization of (11)

covT

(
ln ξT+1+k, r

j
T+1

)
+ covT

(
Ak
T+1, r

j
T+1

)
'

RrfT+1

1− arfT

(
arfT − a

j
T

)
, (12)

where Ak
T+1 ≡

∑k
t=1 a

rf
T+t is the liquidity premium on the risk-free bond accumulated between

period T + 1 and T + 1 + k.

We now derive implication of this equation for the optimal composition of government

portfolio. Consider the present value of government budget constraint in period T + 1. It can

12



be written as

ET+1

∞∑
t=1

QT+t
T+1XT+t = BT

RrfT+1 +
∑
i≥1

ωiT r
i
T+1

 , (13)

where

QT+t
T+1 ≡ 1× 1∑

i≥1 r
i
T+2ω

i
T+1 +RrfT+2

× ...× 1∑
i≥1 r

i
T+tω

i
T+t−1 +RrfT+t

are discount rates between period T + 1 and T + t, and
∑

i≥1 denotes a sum over all assets

i 6= fr. One can show that to the first order approximation expected excess returns must be

zero, so the first order approximation of the government budget constraint satisfies

∞∑
t=1

XT+tET+1∂σQ
T+t
T+1+

∞∑
t=1

Q
T+t
T+1ET+1∂σXT+t =

∑
i≥1

∂σr
i
T+1ω

i
T

BT+∂σ

(
BTR

rf
T+1

)
, (14)

where QT+1
T+1 = 1 and QT+t

T+1 ≡ 1× qrfT+1 × ...× q
rf
T+t−1 for t > 1 is the discount rate calculated

using one period government discount rates. At this point, this is still an identify. It says that

the first order approximation of the budget constraint can be decomposed into fluctuations in

interest rates (the first expression on the left hand side of equation (14)) and fluctuations of

primary deficits (the second expression on the left hand size of (14)). These fluctuations should

be equal to fluctuations in the value of government portfolio, the expression on the right hand

size of (14). As long as the present value of the government budget constraint is finite, this

equation holds in any equilibrium.

To obtain implications for the optimum portfolio, we substitute the optimality conditions

(11) and (12). These conditions show the relationship between returns and tax revenue elastici-

ties ξt. To connect it to the expressions that appear in the budget constraint (14), observe that

owing to the assumption of no income effects, we can decompose fluctuations in primary deficit

∂σXt into fluctuations attributed to fluctuations in ∂σ ln ξt, and in fluctuations attributed to

other shocks. In particular, we show in the appendix, that we can write

∂σXt = ζ̄tȲt∂σ ln ξt + ∂σX
⊥
t , (15)

where ζt ≡ ξ2
t

(1−τ t)2
γt

, ζ̄t is its zeroth order approximation, and ∂σX
⊥
t is independent of ∂στ t.

We now apply this decomposition to (14), multiply both sides of that equation by ∂σr
j
T+1

and take expectations at time T, and substitute the optimality conditions (11) and (12) to

characterize the optimal public portfolio.

We summarize the optimal portfolio in the following theorem. Let i = 1, ..., I ≤ ∞ be the

set of securities, in addition to the one period bond, that the government can trade and let

ωT be a vector that summarizes the portfolio of those securities in period T with elements
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ωT [i] = ωiT . Define matrices ΣQ
T , ΣX

T , Σa
T ,ΣT and diagonal matrices ΠQ

T , Π
a
T , ΠA

T with elements

as shown in the following table.

ΣQ
T [j, t] = covT

(
lnQT+1+t

T+1 , rjT+1

)
ΠQ
T [t, t] = ET

qrfT+tXT+1+t

YT+t

ΣA
T [j, t] = covT

(
At
T+1, r

j
T+1

)
ΠA
T [t, t] = ET qrfT+t

ȲT+1+t

ȲT+t
ζT+1+t

ΣX
T [j, t] = covT

(
X⊥T+t

ETYT+t
, rjT+1

)
ΣT [j, i] = covT

(
riT+1, r

j
T+1

)
Πa
T [t, t] =

ET ζT+t(
1−arfT

)
qrfT

Σa
T [j, t] = arfT − a

j
T

Finally, let wT be a vector with elements wT [t] = ET qrfT Q
T+t
T+1

YT+t

YT
.

Theorem 1. (i). The optimal portfolio ωT satisfies

qrfT
BT
YT

ΣTωT '
[
ΣQ
T ΠQ

T + ΣX
T +

(
Σa
TΠa

T − ΣA
TΠA

T

)]
wT . (16)

(ii). If, in addition, there some Γ, q such that the following stationary conditions are

satisfied

ET τT+t ≈ τT , ETγT+t ≈ γT , ET
XT+t

YT+t
≈ XT

YT
,ET

YT+t+1

YT+t
≈ Γ, ET qrfT+t ≈ q, (17)

where ”≈” means that the relationship holds with equality up to order O (σ) , then the optimal

portfolio ωT satisfies

q
BT
YT

ΣTωT '
[
(1− qΓ)

BT
YT

ΣQ
T + ΣX

T − ζT qΓΣA
T

]
w, (18)

where w is a vector with elements w [t] = (qΓ)t .

Theorem 1(i) shows that the optimal public portfolio is determined by the need to hedge

three sources of risk: interest rate risk, captured by matrix ΣQ
T , risk to primary deficits,

captured by ΣX
T , and the liquidity risk, captured by Σa

T and ΣA
T . The vector wT shows how

the government discounts different risks inter-temporally. It is equal to the discount rate on

government bonds adjusted by the growth rate of the economy. Finally, matrices ΠQ
T , Πa

T ,

and ΠA
T are adjustment factors that emerge if there are predictable variations in interest rates,

growth rates, and taxes.

These expressions further simplify if economy is approximately stationary, in the formal

sense defined by equation (17). In this case, adjustment matrices ΠQ
T , Πa

T , and ΠA
T become

constants that show the relative importances of the three types of risks for the government.

By observing equation (18), one can see that the interest rate risk directly scales of the

amount of debt, BT
YT

. To understand why interest rate risk is increasing with debt, observe

14



that the interest rate risk emerges because the government needs to adjust its portfolios in

the future, for example, because it needs to roll over existing debt obligations that are coming

due. The larger the outstanding debt obligations are, the costlier the interest rate risk is, and

it plays a larger role in determining the optimal portfolio.

The primary deficit risk is determined by the covariance of primary deficits with returns

(or, to be more precise, the covariance in primary deficits not associated with fluctuations

in tax revenue elasticity). Liquidity risk is scaled by parameter ζT . Simple algebra shows

that ζT = (1+γT )2

γT

(
1

1+γT
− τT

)2
. ζT is decreasing in τT and reaches 0 at τT = 1

1+γT
, which

corresponds to the peak of the Laffer curve. To understand why current tax levels affect the

importance of hedging interest risk, it is useful to consider the following thought experiment.

Suppose that government can borrow at cheaper rate than household. Then the government

can help households by borrowing on their behalf. The benefit from this transaction comes

from lower interest rates that the government faces. The cost comes from distortions that arise

from higher taxes that such borrowing must entail. The closer the taxes are to the peak of the

Laffer curve, the larger are relative cost of tax distortions to benefits of liquidity provision.

4.1 Optimal portfolio of public debts

Theorem 1 does not take a stance on which securities the government can trade, and character-

izes the optimal portfolio for an arbitrary set of such securities. The most common securities

traded by the government are government debts of various maturities. In this section we

explore the implications of theorem 1 for the optimal debt maturity.

We assume that the government debts come in the form of pure discount bonds (that is,

a bond that has no coupon payments and pays 1 unit of resources at some specified maturity

date) and that the government can issue debt of any maturity. For the purposes of applying

theorem 1, security i will correspond to a bond that matures in period T+1+i. In the appendix

we show the following corollary to theorem 1.

Corollary 2. If government portfolio consists of pure discount bonds as described above, then

qrfT ΣT ' ΣQ
T . In particular, under stationary condition (17), the optimal portfolio satisfies

ωT ≈ w∗T , where

w∗T ≡ (1− qΓ) w +

 YT
qBT

Σ−1
T

ΣX
T + ζT

 1

q
(

1− arfT
)Σa

T − (qΓ) ΣA
T

w. (19)

One implication of the fact that qrfT ΣT ' ΣQ
T , is that the government can hedge the

interest rate risk fully, at least to the order of approximation we consider. Recall that the
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interest rate risk emerges because the government needs to roll over its maturing debt. But if

the government issues debt to match the amount that is due to the expected primary surplus

in future periods then there is no need to roll over debt at all (at least, to the second order)

and so the interest risk is eliminated.

The portfolio that fully hedges interest rate risk becomes especially simple in stationary

economy. In this case, primary surpluses grow at a constant rate and hence the government

chooses a portfolio for which the number of bonds maturing in each period grows with the same

rate. The price of a pure discount bond that matures in period T + t is approximately equal

to qt, and hence the market values of debts of different maturities form a geometric sequence:

the fraction of market value of debt that matures in period T + t in the total market value

of government debt is equal to (1− qΓ) (qΓ)t . This is the first term on the right hand side of

equation (19).

How much the government should depart from full hedging of interest rate risk depends

on how well government bonds can hedge primary deficit and liquidity risks. This is given by

the expression in the square brackets in equation (19). In the next section, we will make an

attempt to estimate the value of this expression using U.S. data and find that it is fairly small.

Thus, U.S. debts appear to be a poor hedge for primary deficit and liquidity risks. This carries

additional implications about which securities U.S. government should invest beyond issuing

public debt. Since public debt can always hedge interest risk fully, the largest gains would

arise from choosing securities that provide a good hedge against primary deficit and liquidity

risks.

5 Quantifying the Optimal Portfolio

In this section, we use U.S. data to measure sufficient statistics that appear in a version of the

formula developed in the previous section. To bring the formula to the data, we need to take

a stand on the market structure, and impose some assumptions on the stochastic processes for

asset prices, deficits, and so on. For the results below, we assume that the government trades

zero-coupon non-state contingent bonds of all maturities. This serves a natural benchmark

(see Angeletos, 2002, Buera and Nicolini, 2004), and well-approximates the portfolio for the

U.S. To keep the number of objects to be estimated tractable, we start with a stronger form

of stationarity on the stochastic processes than equation (17). In particular, we assume that

the conditional means are time-independent. Under these assumptions, we will estimate all

the terms that appear in (19) and then compare the optimal portfolio to the observed U.S.

portfolio.
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5.1 Data

We use quarterly data on prices of U.S. treasury and AAA bonds, a measure of tax rates, and

primary deficits. Most of data spans the period 1952 − 2017, with the exception of data on

the prices of AAA bonds, for which data is only available after 1984. We first describe the

construction of the main variables used in the analysis—excess returns on bonds of different

maturities
{
rjt

}
j,t

, prices of AAA bond
{
qAAA,jt

}
j,t

, primary deficits {Xt}t, and tax rates

{τ t} . Then, we describe how these data maps to the objects we need to implement our optimal

portfolio formula (19)—that is, covariances
{

ΣT ,Σ
X
T ,Σ

A
T ,Σ

a
T

}
and constants {q,Γ, ζ} .

Bond prices Our formulas require us to measure
{
rjt

}
j,t

, which are the excess holding period

returns on bonds of all maturities. The holding period returns come from Fama Maturity

Portfolios published by CRSP. There are 11 portfolios, each adjusted monthly, to hold bonds of

maturities in specified interval– starting from maturities of 6 to 60 months in 6 month intervals,

and a final portfolio for maturities between 60 and 120 months. For each portfolio, we take the

center of the interval to which the portfolio’s maturities corresponds as this portfolio’s maturity.

The holding period excess return equals the holding period return minus the nominal short

rate, which is measured by the quarterly 3-Month Treasury Bill, and then we adjust the returns

for movements in expected inflation. The plots of holding period excess returns are in figure

1 and the summary statistics is in table 1. The mean and the volatility of the excess holding

period returns are increasing in the maturity. In figure 1, we see that there is a significant

comovement across the returns.

As an input to measure the liquidity premium, we use data on prices of AAA securities.

Our main source is Treasury.gov which computes High Quality Market (HQM) Corporate Bond

Yield Curve for the Pension Protection Act and uses a methodology developed at US Treasury

to construct corporate bond yield curves by using extended regressions on maturity ranges.

The HQM yield curve represents the high quality corporate bond market, i.e., corporate bonds

rated AAA, AA, or A.4

Deficits and Taxes Deficits are measured by the real federal government spending minus

the real federal government revenues from the national income and product accounts. The

real federal government spending is measured by the sum of “federal government consumption

expenditures” and “federal government current transfer payments: government social benefits:

to persons”, deflated by the implicit price deflator for GDP. The real federal government

4For more background information see “https://www.treasury.gov/resource-center/economic-policy/corp-
bond-yield/Pages/Corp-Yield-Bond-Curve-Papers.aspx.”
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Table 1: Summary Statistics for Real Holding Period Excess Returns

maturity mean std min 25% 50% 75% max

6 0.08 0.46 -2.37 -0.17 0.05 0.28 2.48
9 0.15 0.89 -3.68 -0.29 0.07 0.50 5.68
15 0.21 1.37 -6.00 -0.53 0.15 0.82 8.15
21 0.23 1.70 -7.18 -0.74 0.14 1.03 9.45
27 0.27 2.01 -7.81 -0.84 0.13 1.31 11.38
33 0.31 2.21 -8.50 -0.97 0.07 1.51 12.01
39 0.33 2.37 -9.68 -1.10 0.07 1.68 11.45
45 0.34 2.53 -10.13 -1.18 0.08 1.64 12.47
51 0.36 2.65 -11.10 -1.31 0.07 1.99 12.45
57 0.29 2.93 -11.19 -1.62 0.01 2.00 15.28
90 0.45 3.25 -12.36 -1.49 0.08 2.12 15.04

Notes: This table records the number of observations, mean, standard deviation, minimum value, 25th percentile,

50th percentile, 75 percentile and maximum value of the sample of real quarterly holding period excess returns

for issues with maturities from 6 months to 90 months. The units of the returns are percents and the unit of

maturity is month.
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Figure 1: Time series for quarterly real holding period excess returns for a subset of maturities.
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Table 2: Covariance Matrix for Real Holding Period Excess Returns and Deficits

6m 12m 18m 24m 30m 36m 42m 48m 54m 60m 510yr X/GDP arft
hprx6m 0.21 0.39 0.59 0.71 0.81 0.87 0.89 0.91 0.92 0.95 0.97 (0.03) 0
hprx12m 0.39 0.79 1.21 1.48 1.72 1.85 1.94 2.00 2.04 2.16 2.27 0.00 0.01
hprx18m 0.59 1.21 1.88 2.31 2.69 2.92 3.06 3.17 3.24 3.45 3.61 0.04 0.01
hprx24m 0.71 1.48 2.31 2.90 3.38 3.68 3.89 4.05 4.16 4.46 4.70 0.11 0.02
hprx30m 0.81 1.72 2.69 3.38 4.06 4.40 4.68 4.90 5.04 5.46 5.80 0.15 0.02
hprx36m 0.87 1.85 2.92 3.68 4.40 4.89 5.18 5.47 5.64 6.09 6.56 0.24 0.02
hprx42m 0.89 1.94 3.06 3.89 4.68 5.18 5.63 5.94 6.15 6.65 7.23 0.30 0.03
hprx48m 0.91 2.00 3.17 4.05 4.90 5.47 5.94 6.42 6.59 7.15 7.86 0.35 0.03
hprx54m 0.92 2.04 3.24 4.16 5.04 5.64 6.15 6.59 7.01 7.52 8.28 0.40 0.03
hprx60m 0.95 2.16 3.45 4.46 5.46 6.09 6.65 7.15 7.52 8.57 9.17 0.50 0.03
hprx510yr 0.97 2.27 3.61 4.70 5.80 6.56 7.23 7.86 8.28 9.17 10.55 0.60 0.04
X/GDP (0.03) 0.00 0.04 0.11 0.15 0.24 0.30 0.35 0.40 0.50 0.60 3.99 0.02

arft 0 0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.04 0.02 0.00

Notes: This table records the covariances of holding period excess returns and deficits normalized by GDP.

revenues is the sum of “federal government current tax receipts” and “federal government

current receipts: contributions for government social insurance”, deflated by the implicit price

deflator for GDP. In table 2, we list the covariance matrix of returns, deficits (relative to GDP)

and note that although the deficits are positively correlated with returns, the magnitude of the

coaviance is an order of magnitude smaller than the covariances of returns with each other.

Later, we will show that this feature will be key in the what shapes the optimal portfolio.

Our tax rate is measured by the sum of federal individual income tax and social security

payroll tax, from the average annual marginal income-tax rates constructed by Barro and

Redlick (2011). We convert annual observations from Barro and Redlick to quarterly assuming

by setting the quarterly tax to the annual mean.

5.2 Objects required for the formula

We start with the constants
{
q,Γ, ζT ,

YT
BT

}
. Exploiting the stronger form stationarity, we

substitute the conditional means ET zT+t with their sample averages. To our order of approx-

imation, q can be estimated as an average of inverse gross return on any security. For our

analysis, we use the average return on the U.S. government’s debt portfolio, and get q = 0.989.

The parameter

ζ =

(
1− τγ

1− τ

)
γ−1 ((1− τ) [1− τ (1 + γ)]) .

19



We set τ = 0.3 which is the average tax rate from Barro and Redlick (2011), and set γ = 0.5

to recover a Frisch elasticity of 0.5. (see Chetty, 2009). We set YT
BT

= −0.25 and Γ = 1.0025

to reflect an debt to annual output ratio of 100%, and an annual growth rate of output to be

1%, respectively.

Liquidity premium For our formula we need to estimate the liquidity premium
{
ajt

}
. From

equation (9), it is clear that we need to take some stand on the SDF Mt to measure liqudity

premiums. In this section, we make two assumptions that simplify the construction of
{
ajt

}
j,t
.

First, we assume that only government-issued securities provide liquidity services and

households’ liquidity preferences are perfectly substitutable across maturities. Second, we

assume that households can trade (frictionlessly) a “synthetic” risk-free bond that provides no

liquidity services. These assumptions can be expressed as a special case of the utility function

Ut in (5) takes the form Ut
(
·, ·,
∑

i∈G qibi, ·
)
, with G being the set of securities that are issued

by the government. Under these assumptions, we can use the definition (9) to express

1− arft =
qAAA,rft

q,rft
,

where qAAA,rf is the price of a “synthetic” risk-free bond that has no liquidity properties, and

show that

ajt ' a
rf
t .

Thus, we just need yields on privately-issued and goverment-issed short maturities bonds{
qAAA,rft , qrft

}
to construct liquidity premiums

{
ajt

}
jt

. For
{
qAAA,rft

}
t

we make use of the

yield curve for AAA-rated privately-issued zero coupon bonds, and for
{
qrft

}
t
, we use the yield

on the three month treasury bill. In figure (2), we plot the time-series for our constructed series

for arft .

Orthogonal component of primary deficits For estimating ΣX , we need to construct
X⊥T+t

Y T+t
. For any process zt

(
st
)
, we have

σ∂σzT+t ≡ ẑT+t = zT+t − ET zT+t +O (σ) .

Thus, using expression (15) to substitute for X⊥T+t, we get

covT

(
rjT+1,

X⊥T+t

YT+t

)
' σ2covT

(
rjT+1,

∂σX
⊥
T+t

YT+t

)
' covT

rjT+1,
ˆXT+t

ETYT+t
+

(
1− τ

1− τ
× γ
)

︸ ︷︷ ︸
ξ

τ̂T+t

 .
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Liquidity Premia on short maturity bonds

Figure 2: Time series for liquidity premia on short maturity bonds.

To construct
ˆXT+t

ETYT+t
, we need to measure ETYT+t. Under the stationary growth assumption,

ETYT+t equals the trend GDP, which is recovered using ETYT+t = et×ΓYT . Then, we construct
ˆXT+t

ETYT+t
as demeaned deficits relative to trend output. To measure τ̂T+t, we detrend the tax

rates constructed using Barro and Redlick (2011) data. Finally, the average revenue elasticity

ξ is backed out from from the average tax rate τ , and the elasticity γ that we set to earlier to

30% and 0.5, respectively. In figure 3, we plot the time series for
X⊥T+t

ETYT+t
. Because tax rates τ t

are not that volatile, the statistical properties of
X⊥T+t

ETYT+t
are very similar to

XT+t

ETYT+t
.

Covariances We now use the time-series for returns, liquidity premium, and orthogonal

component of deficits to construct the required covariances. A well-known concern in using

inverses of covariance matrices in portfolio analysis is sampling uncertainty and how it manifests

as extreme and unstable portfolio weights. For a detailed discussion, see Jagannathan and

Ma (2003), DeMiguel, Garlappi, and Uppal (2007), Senneret, Malevergne, Abry, Perrin, and

Jaffres (2016). These concerns apply equally to bond returns and to address them, we follow

Jagannathan and Ma (2003) and Senneret, Malevergne, Abry, Perrin, and Jaffres (2016). The

main idea is to exploit the fact that most of the variation in returns arises from a small set of

common factors. Then we can use the estimated factor loadings to compute the covariances

and their inverses.

As in Jagannathan and Ma (2003), we start a one-factor structure that implies time-state

independent covariances and later extend it with a GARCH structure to have time-varying

covariances. Assume that
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Figure 3: Time series for quarterly deficits normalized by trend real GDP using Federal Reserve Economic
Data

rkT+t = αk + βr,kfT+t + σr,kεk,T+t, (20)

X⊥T+t

Y T+t

= αX + ρX
X⊥T+t−1

Y T+t−1

+ βXfT+t + σXεX,T+t, (21)

ln arfT+t = αa + ρa ln arfT+t−1 + βafT+t + σaεa,T+t, (22)

fT+t = σfεf,T+t, (23)

where mean and variance of each of εk,T+t, εX,T+t, εa,T+t and εf,T+t conditional on t are 0

and 1, respectively. Using equation (20)-(23), we can show that

ΣT [j, k] = βr,kβr,jσ
2
f + I{k=j}σ

2
r,k

ΣA
T [j, k] = βaβr,jσ

2
f

(
1− ρka

)
1− ρa

ΣX
T [j, k] = ρkXβXβr,jσ

2
f (24)

Also we can show that

Σ−1
T = ∆−1 −

(
∆−1βrf

)
·
(
βr

ᵀ

f ∆−1
)

σ−2
f + βrᵀf ∆−1βrf

where ∆ = diag
{
σ2
r,j

}
j
. Thus, we can back out the covariances from the estimates of the

factor-model. For intermediate maturities, we interpolate the loadings
{
βr,j , σr,j

}
j
, and for

larger maturities outside our sample, we we set them equal to the largest maturities (i.e., 10

years) that we observe.
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Table 3: FACTOR LOADINGS RETURNS

maturity Constant s.e. Factor s.e. Adj. R2 F-stat

6 0.08 (0.02) 0.04 (0.00) 0.51 263
9 0.15 (0.03) 0.09 (0.00) 0.69 570
15 0.22 (0.04) 0.14 (0.01) 0.73 707
21 0.25 (0.05) 0.19 (0.01) 0.8 996
27 0.29 (0.05) 0.23 (0.01) 0.85 1449
33 0.32 (0.05) 0.26 (0.01) 0.89 2053
39 0.35 (0.04) 0.28 (0.01) 0.92 2984
45 0.35 (0.04) 0.3 (0.00) 0.94 4247
51 0.38 (0.04) 0.32 (0.00) 0.95 5278
57 0.31 (0.04) 0.35 (0.00) 0.95 5176
90 0.46 (0.03) 0.4 (0.00) 0.98 10147

Notes: Estimated coefficients for excess returns factor regressions (20).

We set ft to the first principal component of returns, and estimate (20)-(23) using ordinary

least squares. In table 3, we report the factor loadings on returns. Since the factor captures 90%

of the variation of returns, the factor loadings are all statistically significant, and the factor

loadings
{
βr,j
}
j

are increasing in the maturities. In table 4, we summarize the remaining

estimates of equations (21) and (22). Both, the orthogonal component of deficits and the

liquidity wedge on the risk-free bond are persistent. The orthogonal component loads positively

on the common factor in returns, while the the liquidity wedge on the risk-free bond loads

negatively on the common factor.

5.3 The Optimal Portfolio

With all the estimates in hand, we can implement the optimal portfolio formula (19). In figure

4, we plot {ωj} as a function of the maturities. Overall, we obtain an exponentially declining

shape. The area under the curve is 95%, which means that 5% of the debt is issued insecurity

0, or the risk-free debt. In figure 5, we investigate the sub components–portfolio that hedges

interest rate risk, portfolio that hedges the primary surplus risk, and portfolio that hedges the

liquidity risk. Comparing the blue and the black lines, we find that those two components

offset each other. Thus, the shape of overall portfolio is largely driven the motive to hedge

the interest rate risk. Overall, the fraction of total debt for hedging primary surplus risk

(area above the black line in figure 5) is -17%, and an opposite position of 13% from liquidity
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Table 4: FACTOR LOADINGS ORTHOGONAL COMPONENT AND RISK-FREE LIQUIDITY
WEDGE

orthogonal deficits risk-free liquidity wedge

Constant 0.01 0.01
(0.04) (0.003)

Lag 0.96 0.80
(0.02) (0.048)

Factor 0.01 0.001
(0.00) (0.001)

Obs 240 131
Adj. R 0.91 0.70
F-stat 1235.04 151.4

Notes: Estimation of orthogonal deficits factor regressions (21) and liquidity wedge factor regressions (22).

risk (area under the blue line in figure 5). These magnitudes are driven by the feature that

covariance of deficits (or liquidity wedge) are with returns are small relative to the covariances

of returns with each other. One can gather the intuition for why they mirror each other too.

Substitute the expressions (24) in formula (19) to arrive at

ω = (1− qΓ) w +
Y

B
σ2
f

[(
βX

1− qρX

)
−
(

βaζ

1− ρa

)(
1

1− qΓ
− 1

1− ρaΓ

)]
Σ−1βr.

The shape of the primary surplus risk component and the liquidity risk component of the

optimal portfolio is inherited from the common vector Σ−1βr, and the relative magnitudes

depend of the term in the square bracket. Our estimates suggest that the term in the square

bracket is close small because the two terms are of similar magnitude and cancel each otheer.

The economic intuition for the opposite signs comes from the cyclical patterns in deficits,

expected returns, and liquidity premia. After recessions, deficits are high, but also and risk

premia, and liquidity premia are high for a few periods. The opposite is true after booms.

Thus the signs of the conditional covariances of returns and deficits are the same as that of

returns and liquidity premia.

We next compare the optimal portfolio with the U.S. debt portfolio. We use CRSP to get

the amount outstanding and Macaulay duration for all federally issued (marketable) debt.5

Then for each date, we split the outstanding debt in bins indexed by maturities (at quarterly

5For a few bonds where the duration is absent, we set duration equal to maturity date minus current quotation
date. The CRSP database does not have outstanding amounts for bills. To address this, we supplement the
CRSP data with data from Monthly Statements of Public Debt issued by the US Treasury and fill in the amount
outstanding in bills.
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Figure 4: Portfolio shares of securities with maturities from 2 quarters to 121 quarters
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Figure 5: Sub components of optimal portfolio shares
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Figure 6: Portfolio shares of securities with maturities from 2 quarters to 121 quarters

intervals). In figure 6, we overlay the time-averaged US debt profile with the optimal profile.

The U.S. debt profile starts above the optimal and curves cross each other at around 25

quarters. We find that the US overweights short maturities relative to the optimal. In terms

of Macaulay duration, the optimal portfolio has a duration of about 13 years which is much

larger than the range 5 years that we found for the U.S. debt profiles.

5.4 Time-varying covariances

The statistical model used so far implies that first and second moments are time-independent.

This yielded a optimal portfolio that was stationary. Even with condition (17), our theory

suggests that the portfolio that hedges interest rate risk requires no rebalancing while the

other two hedging components should if
{
ζT ,

YT
BT

}
or
{

ΣT ,Σ
X
T ,Σ

A
T ,Σ

a
T

}
vary with time. In

this section, we revisit the calculations of the optimal portfolios after allowing for time-variation

in the variances and covariances of returns. We extend the factor model laid out in equations

(20) – (22) so that the parameters
(
{σr,k}k , σX , σa, σf

)
are replaced by univariate GARCH
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processes:

σ2
x,t = σx +

Px∑
j=1

σARx,p ε
2
t−p +

Qx∑
j=1

σARx,q σ
2
t−p

where x is a generic place holder for the returns, orthogonal deficits, risk-free liquidity wedge.

We impose that all ε’s are standard Gaussian and indepdnent of each other. An immediate

corrolary of this structure is that

Σt = σ2
f,t+1βfβ

ᵀ
f + ∆t+1

where ∆t now is the diagonal matrix with {σ2
k,t}k. Similarly, we have ΣX

t [j, k] = ρkXβXβr,jσ
2
f,t+1

and ΣA
t [j, k] = βaβr,jσ

2
f,t+1

(1−ρka)
1−ρa

. We impose that εxt is Gaussian, set Px = Qx = 2 and esti-

mate
(
σx,
{
σARx,p

}
p≤Px

,
{
σMA
x,q

}
q≤Qx

)
for all x using Maximum Likelihood.

In figure 7, we plot estimated conditional volatilities for a subset of variables. There is

a clear pattern. The volatilities for returns (including the factor) and macro aggregates are

high in the early 80s and the great recession of 2008-2010 and quite stable in the intervening

periods. Keeping everything else the same, periods when the factor is more volatile increases

the covariance of returns, the covariance of returns with output growth (or tax revenues) as

well as the variance of returns. Thus, its effect on the optimal portfolio is ambiguous. In

figure 8, we plot the optimal portfolio net of the portfolio that hedges the interest rate risk.

Quantitatively, we find that the optimal portfolios are stable, in spite of the fact that the

volatities of the returns and factors are quite different in these sub periods.
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6 Optimal public portfolios and price impact

The analysis in section 4 was done under the assumption that asset prices do not respond to

the adjustment’s in government portfolios and subsequent tax changes. In this section we drop

this assumption. In general, to study optimal public portfolios when government actions affect

asset prices one needs to know how changes in composition of government portfolios and tax

rates affect returns on various assets. This is ultimately an empirical question. Our theoretical

framework imposes very few restrictions on how asset prices may change in response to the

perturbations we considered in section 4. The literature that estimates such price impacts

using credible, well-identified causal effects is still largely in its infancy, although several recent

papers made important progress in answering this question.

Because of these difficulties, and a lack of a consensus on the model of asset price formation

in the literature, we approach the analysis in this section as follows. We restrict attention to

study the optimal portfolio of government debts, similar to the one we analyzed in section

4. We consider three different models of how bond prices are affected by government’s per-

turbation of its portfolio. We first start with the simplest model, in which we assume that

price of government debt of any given maturity is a simple downward sloping function of the

outstanding quantity of that debt. This model is most simple and transparent, and will allow

us to illustrate many insights very simply. This model is quite popular in both theoretical (e.g.,

Bigio, Nuno, and Passadore (2019)) and empirical (e.g., Hamilton and Wu (2012)) work. We

then consider a model in which prices of debts of different maturities depend on the duration

of government debt. This model is inspired by work of Greenwood and Vayanos (2014), who

both developed a theoretical framework to account for the observed price impacts of changes

in the maturity structure of public portfolios similar to those that we studied in section 4, and

used U.S. data to estimate key parameters of that model. In the empirical part of this section,

we show that parameters estimated by those authors map directly into the sufficient statistics

required by this theory, and use their estimates to re-visit our analysis in section 5. Finally,

the third model we consider is the one where we assume that there are no foreign investors,

economy is closed, and households receive no direct benefits from government bonds. This

model is a version of standard Ramsey models used widely to study optimal public portfolios

(Lucas and Stokey (1983), Angeletos (2002), Buera and Nicolini (2004)). We use this model

to illustrate two insights. First, qualitatively, the economic forces that shape optimal public

portfolios are very similar to the simpler models we consider. Secondly, quantitatively, such

models have strong predictions about the relationship between prices of government debts and

macroeconomic variables, and how such prices respond to changes in government portfolios.
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Such predictions are difficult to reconcile with the U.S. data.

6.1 Simple price effects

In this section, we assume that government faces a simple downward demand curve for each

maturity of debt that it issues. That is, we assume that the relationship between prices and

quantities for each security are given by

ln qit = λi0,t + λitB
i
t. (25)

It is natural to assume is that λit ≥ 0, so prices decline in the amount of outstanding debt

(recall, that under our sign convention, debt is a negative value of Bi
t).

Consider the same perturbation introduced in the beginning of section 4: the government

issues ε

qjT
units of any debt j in period T than it then repays in period T+1, with adjusting taxes

in all periods to satisfy its budget constraint. Let φit ≡ −bit/Bi
t be the fraction of government

debt i held by households. The welfare effect from this transaction be can written as

∂εV0

βT Pr (sT )MT (sT )
=

{(
1

ξT
− 1

)
− ET

βMT+1

MT
RjT+1

(
1

ξT+1

− 1

)}
+ ajT

(
1 + λjTφ

j
TB

j
T

)
+λjT

[(
1

ξT
− φjT

)
Bj
T −

(
1

ξT
− φjT−1

)
Bj
T−1

]
. (26)

It is instructive to compare this expression to equation (10). The term in the curly brackets is

identical in the two cases and captures the smoothing of deadweight losses from taxation. The

second force is the liquidity term ajT , but it is now adjusted by
(

1− λjT b
j
T

)
. Recall that when

a government sells one dollar worth of government bond j, it generates ajT units of welfare

due to the liquidity premium. However, selling bond also lowers its price, and therefore the

market value of holding of that security. This offsets some of the benefits from the additional

liquidity previous. That, all things being equal, welfare is higher if liquidity is provided via

price-insensitive bonds, that have low value of λjT .

Finally, the term in the second line of (27) captures welfare impact of additional revenues

raised or lost due to price changes. To understand this term, observe that price change has a net

effect λjT

(
Bj
T −B

j
T−1

)
on government budget constraint. Selling ε

qjT
units of security lowers

its price by λjT . This has no direct resource effect on government budget constraint if, besides

engaging in this transaction, government did not trade this security, so that Bj
T − B

j
T−1 = 0

in the baseline equilibrium. If in the baseline equilibrium, the government trades security j

in period T, then lower prices lead to a shortfall of λjT

(
Bj
T −B

j
T−1

)
dollars of resources if

Bj
T − B

j
T−1 < 0 (i.e. government sold security j), and a surplus if it is bought it in period T.
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The shadow cost of extra resources is βTMT /ξT . Similar arguments imply that the marginal

effect of the price impact for households is βTMTλ
j
T

(
bjT − b

j
T−1

)
. By combining these two

effects and re-arranging, we get the second line in equation (27).

Another way to understand the price impact is to observe that we can write(
1

ξT
− φjT

)
Bj
T =

[
φjT

(
1

ξT
− 1

)
+
(

1− φjT
) 1

ξT

]
Bj
T .

Fraction φjT of government debt is held by domestic households. For such bonds, a dollar

gain from the price impact for the government is a dollar loss for the households. The net

welfare effect is not zero, however, since this extra dollar of revenues allows the government to

decrease tax rates and lower distortions. Therefore, the welfare effect from the price impact on

domestically held bond is proportional to the deadweight loss from taxes,
(

1
ξT
− 1
)

. Fraction(
1− φjT

)
of government debt is held by foreign investors. Since the government does not value

income in the hand of the foreign investors, the welfare effect from the price impact on bonds

held by foreigners is proportional to 1
ξT
.

Similarly to the analysis in section 4, to consider optimal portfolio, we combine the opti-

mality condition (27) for bonds j and rf, and set the net welfare impact to zero. This gives

us the optimality condition

ET
βMT+1

MT

rjT+1

ξT+1

=

{
λjT

(
1

ξT
− φjT + ajTφ

j
T

)
Bj
T − λ

j
T

(
1

ξT
− φjT−1

)
Bj
T−1

}
−
{
λrfT

(
1

ξT
− φrfT + arfT φ

rf
T

)
Brf
T − λ

rf
T

(
1

ξT
− φrfT−1

)
Brf
T−1

}
. (27)

The underlying transaction we consider is very similar in flavor to Quantitative Easing (QE)

that central banks of several countries conducted in the aftermath of the 2007 financial crises,

when they issued short debt to purchase debts of longer maturities. We then approximate this

optimality condition to obtain a tractable extension to our optimal portfolio formula.

Before presenting the expansion, it is useful to point out that we need to take a stance on

how parameter λit depends on σ. In what follows, we assume that our transaction generates

a price impact of the order of O
(
σ2
)
, so that λit = O

(
σ2
)
. We do it for two reasons. If

price impact is of order lower than σ2, then the composition of the optimal public portfolio is

determined essentially exclusively by price impacts.6 More importantly, many commonly used

models of asset price determination imply the price impact from QE-style asset swap should be

zero to the zeroth and first-order approximations. For example, this is true both in Greenwood

and Vayanos (2014) that we study in section 6.2 and in closed economy that we analyze in

6See Bigio, Nuno, and Passadore (2019) who analyses a model that closely resembles this case.
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section 6.3. To the zeroth order, there is no risk, and to the first order all risk is price by

risk-neutral agents, so in both cases the transaction we consider involves swapping to assets

with identical expected returns, and all economic agents are indifferent about such swaps.

Applying our approximation, the analogue of equation (11) becomes

covT

(
ln ξT+1, r

j
T+1

)
'

(
1− arfT
RrfT+1

)−1 [
arfT − a

j
T

]

−

(
1− arfT
RrfT+1

)−1(
ξT+1

2

){
λjT

(
1

ξT
− φjT + ajTφ

j
T

)
B
j
T − λ

j
T

(
1

ξT
− φjT−1

)
B
j
T−1

}

+

(
ξT+1

2

)(
1− arfT
RrfT+1

)−1{
λrfT

(
1

ξT
− φrfT + arfT φ

rf
T

)
B
rf
T − λ

rf
T

(
1

ξT
− φrfT−1

)
B
rf
T−1

}
(28)

A generalized transaction, when the government rolls over excess returns for additional k

periods rather than returning them in period T + 1, has very similar optimality condition,

except there is an additional term covT

(
Ak
T+1, r

j
T+1

)
on the left hand side of (28). A convenient

simplification is that all price impacts from portfolio adjustments between periods T + 1 and

T + 1 + k disappear from the second order approximation: those portfolio adjustments are

proportional to rjT+1λ
rf
T+1+t and are of order O

(
σ3
)
.

It is straightforward to apply the same steps as in the proof of theorem 1 to obtain optimal

portfolio with price impacts. We provide this analysis in the appendix. Here we focus on

additional implications that emerge due to price effects. To illustrate them transparently, we

make several assumptions. We make the same stationarity assumptions (17) as we did in

the proof of corollary 2. In addition, we assume that households hold a fixed proportion of

government debt of each maturity, −bit/Bi
t ≈ φ for all i, and t ∈ {T, T − 1} , and liquidity

premium is the same for all bonds, aiT ' a for all i. None of these assumptions have material

impact on the points that we want to raise. Finally, we assume that λrfT = 0, so that the one

period bond is the least price sensitive among all government bonds. This is consistent with the

empirical evidence (see Krishnamurthy and Vissing-Jorgensen (2011) and also D’Amico and

King (2013)), and making this assumption will allow to be more concrete about the direction

of impact of the price effects on the optimal portfolio.

As in section 4.1, we assume that government portfolio consists of pure discount bonds of

all maturities. Let B
(T+t)
T denote the quantity of bond that maturities in period T + t that

is held at period T. Let ωT , ω̂T−1 be a vector with elements ωT [t] =
q
(T+1+t)
T B

(T+1+t)
T

BT
and

ω̂T−1 [t] =
q
(T+1+t)
T B

(T+1+t)
T−1

BT
. That is, ωT [t] is the portfolio share of the bond that matures in
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period T + 1 + t in period T portfolio, while ω̂T−1 [t] is a counterfactual portfolio share of the

same bond if the government kept its quantity the same as in period T−1.Thus, ωT [t]−ω̂T−1 [t]

the market value of rebalancing holdings of bond that matures in period T + 1 + t adjusted

by the market value of debt in period T. Finally, let ΛT be a diagonal matrix with elements

ΛT [t, t] =
YTλ

(T+1+t)
T

q
(T+1+t)
T

. We have

Proposition 3. Under the assumptions of this section, the optimal portfolio of public debts

satisfies

ωT ' (1− qΓ) w +

(
YT
qBT

)
Σ−1
T

[
ΣX
T + ζT

(
q−1

1− arfT
Σa
T − qΓΣA

T

)]
w

− χTΣ−1
T ΛT

[(
1

ξT
− φ

)
(ωT − ω̂T−1)

]
. (29)

where expression for χT > 0 is given in the appendix.

The first line on this expression is identical to (19) and shows the same three hedging

motives – interest rates, deficits, and liquidity risk – as in the previous section. The second

line shows the additional consideration: the cost of portfolio rebalancing, that is proportional

to (ωT − ω̂T−1). An alternative way to write equation (19) is to use the definition of w∗T .

Corollary 4. The optimal portfolio satisfies

ωT = w∗T − χTΣ−1
T ΛT

(
1

ξT
− φ

)
︸ ︷︷ ︸

DT

(ωT − ω̂T−1) .

This corollary provides a way to think about the law of motion of the optimal portfolio.

Each period, there is the optimal portfolio target w∗T . This is where ideally the government

would like the portfolio to be, if there were no cost of rebalancing. In the stationary economy,

this portfolio is same as the one that hedges the three risks to the government. Price effects

also have implications for how quickly the government goes to that target. Large price effects

imply higher DT and hence slower speed of convergence.

In the previous section, we showed that the expression in square brackets in equation (29)

is small empirically, and without price effects the optimal portfolio is approximately given by

(1− qΓ) w. One property of this portfolio is that in the stationary economy it requires no

rebalancing: if ωT−1 = (1− qΓ) w, then ω̂T−1 = (1− qΓ) w and therefore ωT = (1− qΓ) w.

Minimizing rebalancing is exactly the feature the minimizes rollover needs and therefore interest

risk. This property is summarized in the next lemma
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Corollary 5. If the expression in the square brackets in equation (29) is equal to 0 and economy

is stationary, then

ωT = (1− qΓ) w.

A more general version of the formula that corresponds to (16) can be obtained if we

dispense with stationarity. We use this generalization to explain how the optimal portfolio

with price effects depends on liquidity premia. We can show that the

qrfT
BT
YT

ΣTωT '
[
ΣQ
T ΠQ

T + ΣX
T +

(
Σa
TΠa

T − ΣA
TΠA

T

)]
wT

−

(
qrfT BT

ȲT

)
χTΛT

[(
1

ξT
− φ

)
(ωT − ω̂T−1)

]

−

(
qrfT BT

ȲT

)
χTΛTaTφωT

The first line is same as the case with no price effects (16). The second line is the same as

(29) and captures the cost of adjustment. The new term in the third line that depends on the

liquidity premium. The new term implies that the portfolio weights are adjusted downward

when aT > 0. The reason for the downward adjustment can be understood from our discussion

following equation (27): it is better to provide liquidity with assets that are less price sensitive.

Since we assumed that one period bond is least price sensitive, the government issues more of

this very short bond and less of bonds of longer maturities.

6.2 Greenwood-Vayanos price effects

In this section we consider the implications of price effects implied by the work of Greenwood

and Vayanos (2014). Those authors developed a framework to account for observed price

responses to changes in the composition of government debt and estimated their key parameters

using U.S. data. In their model, government debt is prices by “arbitrageurs” that are equivalent

to our foreign investors. Those arbitrageurs are the marginal investors who purchase debts of

different maturities to maximize their mean-variance utility. “Other investors” can hold some

of government debt but trading frictions prevent them from pricing debt on the margin. Those

are equivalent to our households with trading frictions causing non-zero liquidity wedge.

Greenwood and Vayanos show that in their model price of each debt is a function of

the overall duration of government portfolio, and in the empirical work they consider price

functions of the form

ln q
(T+t)
T = λ0,T + λ

(t)
T

( ∞∑
k=1

kB
(T+k)
T

)
(30)
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where the expression in the brackets in the (negative of) duration of outstanding portfolio of

government bonds.

It is easy to verify that in their model λ
(t)
T satisfy the restrictions we impose in section 6.1:

λ
(t)
T are of the order O

(
σ2
)

and the shortest maturity is price insensitive, corresponding to

λ
(1)
T = 0 in our discrete time model.

It is easy to see that our analysis from section 6.1 extends with minimal changes to these

settings. Consider the portfolio swap we discussed above, whereas the government buys ε units

of bond of duration t + 1 and decreases holding of a one period bond by −q(1+t)
T /q

(1)
T ε. It is

easy to verify that this increases duration, by

∂εDT =

[
1 + t

q
(T+1+t)
T

− 1

q
(T+1)
T

]
q

(1+t)
T .

and hence prices of each security change by ∂εq
(T+t)
T = λ

(t)
T q

(T+t)
T

[
1+t

q
(1+t)
T

− 1

q
(1)
T

]
q

(1+t)
T . Using

the same steps as in the previous section, we establish

Proposition 6. Suppose prices are given by (30). Then formula (29) characterizing optimal

portfolio holds, except matrix ΛT has elements

ΛT [i, j] =

(
1 + i

q
(T+1+i)
T

− 1

q
(T+1)
T

)
λ

(j)
T YT

q
(T+1+j)
T

. (31)

Thus, the only thing that changes with price prices of the form (30) is the quantitative

properties about the target portfolio and the speed of reversion to it, that depends on matrix

ΛT . Qualitatively, all the results of the previous section remain unchanged.

We finally use estimates from Greenwood and Vayanos (2014) to measure ΛT [i, j] from the

estimates of a set of regressions of yields on duration of public debt that are reported in their

paper. More specifically, they regress

ln ynt = an + bnDt − cn ln y1
t + noise

where is the duration of public debt. Using the equation (30), we get that λ
(n)
T = −n × bn.

While point estimates of bn vary across maturities, they are not that different statistically. We

therefore, set all bns equal to the 0.003, which is the mean across all maturities that they report.

We also need to take a stand on how the debt is split between domestic and foreign holders.

In Greenwood and Vayanos (2014) setup, the marginal debt issuances are to foreigners. For

now, we capture this segmentation by assuming that bi,t = 0.

Putting everything together, the mean that the target portfolio in equation (29) simplifies

to (
I + xΣ−1Λ

)−1
[ωno,pe] = ωtarget
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where the ωnp,pe is the stationary portfolio when price impact is turned off; the constant x is

given by

x =
(1− τ − γτ)2

γ
× Γ

1− qΓ
.

and the i, j element of matrix Λ are described in by equation (31). We find that the two

are very similar to each other. This follows from corollory 5 and our earlier finding that the

portfolio without price effects mirrors the portfolio that hedges the interest rate risk.

6.3 Price effects in a closed economy

To be written

7 Conclusion

We study the optimal composition of a government’s portfolio in a large class of macro-finance

models. We derive a formula for the optimal portfolio and show that it can be expressed

in terms of estimable “sufficient statistics”. We use U.S. data to calculate the key moments

required by our theory and show that they imply that the optimal portfolio is approximately

geometrically declining in bonds of different maturities and requires little rebalancing in re-

sponse to aggregate shocks. Our optimal portfolio differs from portfolios prescribed by existing

models often used in the business cycle literature and also from those adopted by the U.S. Trea-

sury. The key normative differences are driven by counterfactual asset pricing implications of

the standard models. A natural extension to our exercise is apply our methods in settings

in which the government lacks commitment. Such models are extensively in the international

finance literature to study sovereign debt. We leave this for future work.
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8 Appendix

8.1 Proofs for section 4

We first prove the following preliminary result.

Lemma 7. ξt ∈ (0, 1 + γt) , Mt > 0.

Proof. Function τ
1−τ is strictly increasing on (−∞, 1) interval and its range is (−1,∞). Tax

revenues are τ (1− τ)γt θt. It is easy to verify that tax revenues are maximized if τ t
1−τ t = 1

γt
,

so the definition of regular equilibrium implies that τ t
1−τ t is bounded away from 1

γt
. Therefore,

ξt = 1− γt τ t
1−τ t ∈ (0, 1 + γt) .

The first order condition for household is

∂V0

∂V1 (s1)
× ...×

∂Vt−1

(
st−1

)
∂Vt (st)

Uc,t
(
st
)

= Pr
(
st
)
Mt

(
st
)
.

Since Wt is strictly increasing, and Ut is strictly increasing in consumption, the left hand side

of this equation is strictly positive, and therefore Mt

(
st
)
> 0.

We now consider properties of approximations. Thought this section we refer to approxima-

tions where uncertainty is shut down after state sT . All our approximations work through the

following line of reasoning. Consider any equilibrium condition of the form F (xT ) = 0, where

xT is a vector of equilibrium variables and F is some function. When we consider sequences

of economies parameterized by σ, this equation should hold for all σ, so it can be written as

ETF (xT+1 (σ)) = 0. When we expand it with respect to σ, we get

F (x̄T ) + σFx (x̄T ) ∂σx̄T +
σ2

2
(∂σσx̄T )T Fxx (x̄T ) ∂σσx̄T +O

(
σ3
)

= 0,

where Fx (x̄T ) and Fxx (x̄T ) are Jacobian and Hessian of F evaluated at x̄T . Since this equation

should hold for all σ, we must have

F (x̄T ) = Fx (x̄T )× ∂σx̄T = ET (∂σσx̄T )T Fxx (x̄T ) ∂σσx̄T = 0.

We use these condition (and their generalization for period T + t variables) to derive properties

of approximations x̄T , ∂σx̄T , ∂σσx̄T . Once we obtain these, we have the approximation of our

equilibrium objects

xT = xT (1) ' x̄T + ∂σx̄T +
1

2
∂σσx̄T .

Lemma 8. (i). r̄jT+1 = ET∂σrjT+1 = 0, ārfT = ājT , ∂σa
rf
T = ∂σa

j
T for all j.
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(ii). Optimality conditions (11) and its generalization for k period roll over of excess returns

imply that

ET∂σ ln ξT+1∂σr
j
T+1 =

R̄rfT+1

1− ārfT

∂σσa
rf
T − ∂σσa

j
T

2
,

ET∂σ ln ξT+1+k∂σr
j
T+1 =

R̄rfT+1

1− ārfT

∂σσa
rf
T − ∂σσa

j
T

2
− ET∂σAk

T+1∂σr
j
T+1.

(iii). Equations (11) and (12) hold.

Proof. (i). To the zeroth order, equation (11) is x̄T+1 =
βM̄T+1

M̄T

r̄jT+1

ξ̄T+1
= 0. By lemma 7,

βM̄T+1

M̄T
> 0 and ξ̄T+1 < ∞, therefore r̄jT+1 = 0. Since r̄jT+1 = 0, the first order expansion of

(11) implies ET∂σrjT+1 = 0. Apply these results to the zeroth and first order expansion of (9)

to show that ārfT = ājT , ∂σa
rf
T = ∂σa

j
T . This shows part (i) of the lemma.

(ii). The second order expansion of (11) is

2ET∂σ
(
βMT+1

MT

)
∂σr

j
T+1+2

(
βMT+1

MT

)
1(

ξ−1
T+1

)ET∂σξ−1
T+1∂σr

j
T+1+

(
βMT+1

MT

)
ET∂σσrjT+1 = 0.

(32)

Applying these results to expansions of equation (9), we have

∂σσa
rf
T − ∂σσa

j
T = 2ET∂σ

(
βMT+1

MT

)
∂σr

j
T+1 +

(
βMT+1

MT

)
ET∂σσrjT+1.

Combine with (32) and observe that
∂σξ
−1
T+1(

ξ−1
T+1

) = −∂σ ln ξT+1 and
(
βMT+1

MT

)
=

(
1−arfT
RrfT+1

)
to get

∂σσa
rf
T −∂σσa

j
T = 2

(
βMT+1

MT

)
ET∂σ ln ξT+1∂σr

j
T+1 = 2

(
1− arfT
RrfT+1

)
ET∂σ ln ξT+1∂σr

j
T+1. (33)

This yields the first equation in part (ii).

When the government rolls over excess returns for additional k periods, the optimality

condition reads

ET
βMT+1

MT

rjT+1

ξT+1+k

[(
βMT+2

MT+1
RrfT+2

)
× ...

(
βMT+1+k

MT+k
RrfT+1+k

)]
= 0.

Expand the previous equation to get(
βkMt+1+k

Mt+1Q
t+1+k
t+1

)
Et

[(
βMt+1

Mt

)
1

2
∂σσr

j
t+1 + ∂σ

(
βMt+1

Mt

)
∂σr

j
t+1

+

(
βMt+1

Mt

)(
βkMt+1+k

Mt+1Q
t+1+k
t+1

)−1

∂σ

(
βkMt+1+k

Mt+1Q
t+1+k
t+1

)
∂σr

j
t+1

]

=

(
βMt+1

Mt

)(
βkMt+1+k

Mt+1Q
t+1+k
t+1

)
Et∂σ ln ξt+1+k∂σr

j
t+1. (34)
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Define ln Ãkt+1 = −
∑k

t̃=1 ln
(

1− arft+1

)
. The optimality of the household from a rolling over a

“ synthetic” one period risk-free bond gives us

Mt+1 = Et+1β
kMt+1+kR

AAA,rf
t+2 × ...×RAAA,rft+1+k

= Et+1β
kMt+1+kR

rf
t+2 × ...×R

rf
t+1+k ×

1

1− arft+1

× 1

1− arft+2

...
1

1− arft+k
.

= Et+1β
kMt+1+kR

rf
t+2 × ...×R

rf
t+1+k × Ã

k
t+1

Multiply by rjt+1 and take expectations as of t :

Etrjt+1 = Etrjt+1

βkMt+1+k

Mt+1Q
t+1+k
t+1

[
Ãkt+1

]
.

Take second order expansions

Et∂σσrjt+1 =

 βkMt+1+k

Mt+1Q
t+1+k
t+1

[
Ãkt+1

]
︸ ︷︷ ︸

=1

Et∂σσrjt+1

+

([
Ãkt+1

])
2Et∂σrjt+1∂σ

βkMt+1+k

Mt+1Q
t+1+k
t+1

+

(
βkMt+1+k

Mt+1Q
t+1+k
t+1

)
2Et∂σrjt+1∂σ

[
Ãkt+1

]
Simplify to obtain

Et∂σrjt+1∂σ
βkMt+1+k

Mt+1Q
t+1+k
t+1

= −

(
βkMt+1+k

Mt+1Q
t+1+k
t+1

)
Et∂σrjt+1∂σ ln Ãkt+1 (35)

Subtitute (33) and (35) in (34) to get(
1− arft
R
rf
t+1

)−1

Et

[
∂σσa

rf
t − ∂σσa

j
t

2

]
= Et∂σ ln ξt+1+k∂σr

j
t+1 + Et∂σrjt+1∂σ ln Ãkt+1

Re-arrange to get the second equation in (ii).

(iii). Since

arft − a
j
t '

1

2
∂σσ

(
arft − a

j
t

)
and

Et∂σrjt+1∂σ ln Ãkt+1 ' covT
(

ln Ak
t+1, r

j
T+1

)
1− arfT
RrfT+1

covT

(
ln ξT+1, r

j
T+1

)
'

(
1− arfT
RrfT+1

)
ET∂σ ln ξT+1∂σr

j
T+1

we obtain (11). Similar arguments yield (12).
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8.2 Proof of Theorem 1

We prove this theorem in several steps.

Lemma 9. Equation (14) holds.

Proof. Due to lemma 8(i), we have

Q̄T+t
T+1 =

1

R̄rfT+2

× ...× 1

R̄rfT+t

= Q̄T+t
T+1, ET∂σQT+t

T+1 = ET∂σQT+t
T+1 for t > 1.

This implies that the first order terms in the expansion of (13) is (14).

Lemma 10. Equation (15) holds.

Proof. The first order expansion of tax revenue elasticity is

∂σξt = −γ̄t
1

(1− τ̄ t)2∂στ t −
τ̄ t

1− τ̄ t
∂σγt

and therefore

∂σ ln ξt = − γ̄t

ξ̄t (1− τ̄ t)2

[
∂στ t +

τ̄ t (1− τ̄ t)
γ̄t

∂σγt

]
.

Let R (τ t, γt, θt) ≡ τ tYt be tax revenues, where Yt = (1− τ t)γt θ1+γt
t . Let R̄τ ,t, R̄γ,t, R̄θ,t be the

derivatives of this function evaluated at
(
τ̄ t, γ̄t, θ̄t

)
. We have ∂R

∂τ = ∂ lnR
∂ ln τ

τY
τ = ξY. Therefore

we can write

∂σR (τ t, γt, θt) = ξ̄tȲt∂στ t + R̄γ,t∂σγt + R̄θ,t∂σθt

= ξ̄tȲt

[
∂στ t +

τ̄ t (1− τ̄ t)
γ̄t

∂σγt

]
+

[
R̄γ,t − ξ̄tȲt

τ̄ t (1− τ̄ t)
γ̄t

]
∂σγt + R̄θ,t∂σθt

= − ξ̄
2
t (1− τ̄ t)2 Ȳt

γ̄t
∂σ ln ξt +

{[
R̄γ,t − ξ̄tȲt

τ̄ t (1− τ̄ t)
γ̄t

]
∂σγt + R̄θ,t∂σθt

}
.

Primary deficit is Xt = Gt− R (τ t, γt, θt) and, therefore,

∂Xt =
ξ̄

2
t (1− τ̄ t)2 Ȳt

γ̄t
∂σ ln ξt +

{
∂σGt −

[
R̄γ,t − ξ̄tȲt

τ̄ t (1− τ̄ t)
γ̄t

]
∂σγt − R̄θ,t∂σθt

}
︸ ︷︷ ︸

≡∂σX⊥t

.

Routine algebra shows that

ζt ≡ ET ξ2
t

(1− τ t)2

γt
= ET

(1− τ t − τ tγt)
2

γt
,

which verifies equation (15).
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Lemma 11. (i). Let wT+t ≡ qrfT Q
T+t
T+1

YT+t

YT
for t ≥ 1. The optimal portfolio satisfies

∞∑
t=1

w̄T+t

[
q̄rfT+tXT+1+t

ȲT+t

]
ET∂σrjT+1∂σ lnQT+1+t

T+1 (36)

+
∞∑
t=1

w̄T+tET∂σrjT+1

∂σX
⊥
T+t

ȲT+t

+
1

1− ārfT

(
1

q̄rfT

∞∑
t=1

w̄T+tζ̄T+t

)(
∂σσa

rf
T − ∂σσa

j
T

2

)
(37)

−q̄rfT
∞∑
t=1

w̄T+t

[
q̄rfT+t

q̄rfT

ȲT+1+t

ȲT+t
ζ̄T+1+t

]
ET∂σAt

T+1∂σr
j
T+1

=

∑
i≥1

ET∂σriT+1∂σr
j
T+1ω

i
T

 q̄rfT
BT

ȲT
.

(ii). If stationarity conditions (17) hold then w̄T+t = (qΓ)t and equation (36) becomes

(1− qΓ)
B̄T
ȲT

∞∑
t=1

(qΓ)t ET∂σrjT+1∂σ lnQT+1+t
T+1 +

∞∑
t=1

(qΓ)t ET∂σrjT+1

∂σX
⊥
T+t

ȲT+t

−ζ̄T

[
(qΓ)

∞∑
t=1

(qΓ)t ET∂σAt
T+1∂σr

j
T+1

]

=

∑
i≥1

ET∂σriT+1∂σr
j
T+1ω

i
T

 q
BT

ȲT
.

Proof. (i). Multiply (14) by
∂σr

j
T+1

ȲT
, take expectation at time T, use the fact that RrfT+1BT

and QT+1
T+1 are time-T measurable, that ET∂σrjT+1 = 0 by lemma 8(i), and that ET∂σ lnxT+t =

ET ∂σxT+t

x̄T+t
for any variable xT+t to obtain

∞∑
t=2

Q
T+t
T+1XT+tET∂σ lnQT+t

T+1∂σr
j
T+1+

∞∑
t=1

Q
T+t
T+1ET+1∂σXT+t∂σr

j
T+1 =

∑
i≥1

∂σr
i
T+1∂σr

j
T+1ω

i
T

BT .

Substitute (15):
∞∑
t=2

Q
T+t
T+1

ȲT+t

ȲT

XT+t

ȲT+t
ET∂σ lnQT+t

T+1∂σr
j
T+1 +

∞∑
t=1

Q
T+t
T+1

ȲT+t

ȲT
ET

∂σX
⊥
T+t

ȲT+t
∂σr

j
T+1

+

(
R̄rfT+1

1− ārfT

)( ∞∑
t=1

Q
T+t
T+1

ȲT+t

ȲT
ζ̄T+t

)
∂σσa

rf
T − ∂σσa

j
T

2

−
∞∑
t=2

Q
T+t
T+1

ȲT+t

ȲT
ζ̄T+tET∂σAt−1

T+1∂σr
j
T+1

=

∑
i≥1

ET∂σriT+1∂σr
j
T+1ω

i
T

 BT

ȲT
.
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Multiply both sides by q̄rfT , re-arrange indices so that all summations start with t = 1 and use

definition of wT+t to obtain equation (36).

(ii). Stationarity conditions (17) imply that

ξ̄T+t = ξ̄T , ζ̄T+t = ζ̄T ,
ȲT+t

ȲT
= Γt, q̄rfT = q, Q

T+t
T+1 = qt−1, w̄t = (qΓ)t ,

X̄T+t

ȲT+t
=
X̄T

ȲT
.

Therefore, equation (36) becomes

qΓ
X̄T

ȲT

∞∑
t=1

(qΓ)t ET∂σ lnQT+1+t
T+1 ∂σr

j
T+1 +

∞∑
t=1

(qΓ)t ET
∂σX

⊥
T+t

ȲT+t
∂σr

j
T+1

+
ζ̄T

1− ārfT

(
1

q

∞∑
t=1

(qΓ)t
)
∂σσa

rf
T − ∂σσa

j
T

2
− (qΓ)

∞∑
t=1

(qΓ)t ET∂σAt
T+1∂σr

j
T+1

=

∑
i≥1

ET∂σriT+1∂σr
j
T+1ω

i
T

 q
BT

ȲT
.

The zeroth order government budget constraint can be written as
∑∞

t=1 q
t ȲT+t

ȲT

X̄T+t

ȲT+t
= B̄T

ȲT
.

Applying stationarity conditions, we obtain qΓ X̄T
ȲT

= (1− qΓ) B̄T
ȲT
. Substitute this into the

previous equation to show part (ii) of this lemma.

Lemma 12. Theorem 1 holds.

Proof. Consider any three equilibrium variables xT+1, zT+1, %T+1 where %T+1 satisfies

%̄T+1 = ET∂σ%̄T+1 = 0. (38)

We have

ETxT+1%T+1 ' ET
[
∂σxT+1∂σ%T+1 +

1

2
x̄T+1∂σσ%T+1

]
, ETxT+1ET%T+1 ' ET

[
1

2
x̄T+1∂σσ%T+1

]
,

and, therefore,

ET zT+1covT
(
xT+1, %T+1

)
= ET zT+1×

[
ETxT+1%T+1 − ETxT+1ET%T+1

]
' z̄T+1ET∂σxT+1∂σ%T+1.

Since both r̄jT+1 and arfT − a
j
T satisfy property (38) due to lemma 8(i), equation (36) can
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be re-written as

∞∑
t=1

ETwT+t × ET
qrfT+tXT+1+t

YT+t+1
× covT

(
lnQT+1+t

T+1 , rjT+1

)
+
∞∑
t=1

ETwT+t × covT

(
X⊥T+t

ETYT+t
, rjT+1

)

+

 ∞∑
t=1

ETwT+t ×
ET ζT+t(

1− arfT
)
qrfT

(arfT − ajT)

−
∞∑
t=1

ETwT+t × ET qrfT+t

YT+1+t

YT+t
ζT+1+t × covT

(
At
T+1, r

j
T+1

)

=

∑
i≥1

covT

(
riT+1, r

j
T+1

)
ωiT

 qrfT
BT
YT

.

Written in the matrix form, this is equation (16). Same arguments applied to the equation

shown in lemma 11(ii) establishes (18).

Corollary 2 follows from the following lemma.

Lemma 13. Let q
(t)
T , r

(t)
T be the period-T price and excess return of a pure discount bond that

expires in period t. Then q
(T+1)
T covT

(
r

(T+1+t)
T+1 , rjT+1

)
' covT

(
QT+1+t
T+1 , rjT+1

)
for any security

j that the government can trade. In particular, if the government can only trade pure discount

bonds of all maturities and matrix ΣT is arranged so that its ith column corresponds to bonds

expiring in period T + i, then qrfT ΣT ' ΣQ
T .

Proof. We show that

q̄
(T+1)
T ET∂σr

(T+1+t)
T+1 ∂σr

j
T+1 = ET∂σ lnQT+1+t

T+1 ∂σr
j
T+1, (39)

which is equivalent to q̄rfT ET∂σriT+1∂σr
j
T+1 = ET∂σ lnQT+1+t

T+1 ∂σr
j
T+1 in the notation used in

body of the paper. The latter equation implies that qrfT ΣT ' ΣQ
T under the conditions stated

in this lemma due to the same arguments that were used in the proof of lemma 12.

Step 1. q̄
(T+1)
T ET∂σr

(T+1+t)
T+1 ∂σr

j
T+1 = ET

[
∂σ ln

βtMT+1+t

MT+1
−
∑t

k=1 ∂σ ln
(

1− a(T+1+t)
T+k

)]
∂σr

j
T+1.

The definition of returns and liquidity premium imply that

q
(T+1+t)
T = ET

βMT+1

MT
q

(T+1+t)
T+1

1

1− a(T+1+t)
T

= ET

[
β1+tMT+1+t

MT

1

1− a(T+1+t)
T

× ...× 1

1− a(T+1+t)
T+t

]
.
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Therefore, the excess return is

r
(T+1+t)
T+1 =

q
(T+1+t)
T+1

q
(T+1+t)
T

− 1

q
(T+1)
T

=
1
1

1−a(T+1+t)
T

ET+1

[
βtMT+1+t

MT+1

1

1−a(T+1+t)
T+1

× ...× 1

1−a(T+1+t)
T+t

]
ET
[
βMT+1

MT

βtMT+1+t

MT+1

1

1−a(T+1+t)
T+1

× ...× 1

1−a(T+1+t)
T+t

] − 1

ET
[
βMT+1

MT

1

1−a(T+1)
T

] .
Its first order approximation terms can be written as

∂σr
(T+1+t)
T+1 =

(
1− ā(T+1+t)

T

) M̄T

βM̄T+1

ET+1∂σ

[
βtMT+1+t

MT+1

1

1−a(T+1+t)
T+1

× ...× 1

1−a(T+1+t)
T+t

]
[
βtMT+1+t

MT+1

1

1−a(T+1+t)
T+1

× ...× 1

1−a(T+1+t)
T+t

] + t.m.T

=
M̄T

βM̄T+1

1

1− ā(T+1+t)
T

ET+1

[
∂σ ln

βtMT+1+t

MT+1
−

t∑
k=1

∂σ ln
(

1− a(T+1+t)
T+k

)]
+ t.m.T,

where ”t.m.T” denotes ”terms measurable with respect to time T”. Since ā
(T+1+t)
T = ā

(T+1)
T

and ET∂σrjT+1 = 0 for any j by lemma 8(i), this equation imply that

ET∂σr
(T+1+t)
T+1 ∂σr

j
T+1 =

1

q̄
(T+1)
T

ET+1

[
∂σ ln

βtMT+1+t

MT+1
−

t∑
k=1

∂σ ln
(

1− a(T+1+t)
T+k

)]
∂σr

j
T+1.

This proves Step 1.

Step 2. ET∂σ lnQT+1+t
T+1 ∂σr

j
T+1 = ET

[
∂σ ln

βtMT+1+t

MT+1
−
∑t

k=1 ∂σ ln
(

1− a(T+1+k)
T+k

)]
∂σr

j
T+1.

By definition of QT+1+t
T+1 we have

QT+1+t
T+1 = ET+1

βMT+2

MT+1

1

1− a(T+2)
T+1

× ET+2
βMT+3

MT+2

1

1− a(T+3)
T+2

× ...× ET+t
βMT+1+t

MT+t

1

1− a(T+1+t)
T+t

= ET+1
βtMT+1+t

MT+1

1

1− a(T+2)
T+1

× ...× 1

1− a(T+1+t)
T+t

.

Therefore,

ET∂σ lnQT+1+t
T+1 ∂σr

j
T+1 =

ET∂σ
[
βtMT+1+t

MT+1

1

1−a(T+2)
T+1

× ...× 1

1−a(T+1+t)
T+t

]
∂rjT+1[

βtMT+1+t

MT+1

1

1−a(T+2)
T+1

× ...× 1

1−a(T+1+t)
T+t

]
= ET

[
∂σ ln

βtMT+1+t

MT+1
−

t∑
k=1

∂σ ln
(

1− a(T+1+k)
T+k

)]
∂σr

j
T+1.

Step 3. Equation (39) holds.
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Note that

ET∂σ ln
(

1− a(T+1+t)
T+k

)
∂σr

j
T+1 = ET

{
ET+k∂σ ln

(
1− a(T+1+t)

T+k

)}
∂σr

j
T+1

= ET
{
ET+k∂σ ln

(
1− a(T+1+k)

T+k

)}
∂σr

j
T+1 = ET∂σ ln

(
1− a(T+1+k)

T+k

)
∂σr

j
T+1,

where we applied the law of iterated expectations in the first and third equations, and lemma

8(i) in the second equations. This implies that the right hand sides of equations obtained in

Step 1 and 2 are the same, proving (39).

9 Proofs for section 6

Lemma 14. Equation (27) holds

Proof. Direct computations of equation (6) and (7) for the one-time perturbation yields

−
βTMT

(
sT
)

ξT (sT )

[
∂εq

j
T

(
sT
) (
Bj
T

(
sT
)
−Bj

T−1

(
sT−1

))
− ∂εqrfT

(
sT
) (
Brf
T

(
sT
)
−Brf

T−1

(
sT
))]

−βTMT

(
sT
) [
∂εq

j
T

(
sT
) (
bjT
(
sT
)
− bjT−1

(
sT−1

))
− ∂εqrfT

(
sT
) (
brfT
(
sT
)
− brfT−1

(
sT
))]

+βT
∑

i={j,rf}

∂V0

∂V1 (s1)
× ...×

∂VT−1

(
sT−1

)
∂VT (sT )

∂UT
(
sT
)

∂
(
qiT b

i
T

) biT (sT ) ∂εqiT (sT )
+βT+1

∑
sT+1

MT+1

(
sT+1

) rjT+1

(
sT+1

)
ξT+1 (sT+1)

= 0. (40)

To simplify this equation, observe that households optimality condition for asset i is

− ∂V0

∂V1 (s1)
× ...×

∂VT−1

(
sT−1

)
∂VT (sT )

∂UT
(
sT
)

∂
(
qiT b

i
T

) qiT (sT )+ Pr
(
sT
)
MT

(
sT
)
qiT
(
sT
)

=
∑
sT+1

Pr
(
sT+1

)
βM

(
sT+1

) [
qiT+1

(
sT+1

)
+ diT+1

(
sT+1

)]
,

which can be written as

1− ∂V0

∂V1 (s1)
× ...×

∂VT−1

(
sT−1

)
∂VT (sT )

∂UT
(
sT
)
/∂
(
qiT b

i
T

)
Pr (sT )M (sT )︸ ︷︷ ︸

=aiT (sT ).

=
∑
sT+1

Pr
(
sT+1|sT

) βMT+1

(
sT+1

)
MT (sT )

RiT+1

(
sT+1

)
.

Our perturbation has ∂εB
j
T = 1

qjT
and ∂εB

rf
T = − 1

qrfT
. From (25), we get that ∂εq

j
T = λjT and
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∂εq
rf
T = −λrfT . Therefore we can re-write (40) as

1

ξT (sT )

[
λjT
(
sT
) (
Bj
T

(
sT
)
−Bj

T−1

(
sT−1

))
− λrfT

(
sT
) (
Brf
T

(
sT
)
−Brf

T−1

(
sT
))]

+
[
λjT
(
sT
) (
bjT
(
sT
)
− bjT−1

(
sT−1

))
− λrfT

(
sT
) (
brfT
(
sT
)
− brfT−1

(
sT
))]

−ajT b
j
T

(
sT
)
λjT
(
sT
)

+ arfT b
rf
T

(
sT
)
λrfT

(
sT
)

−
∑
sT+1

βMT+1

(
sT+1

)
MT (sT )

rjT+1

(
sT+1

)
ξT+1 (sT+1)

= 0.

Given then definition of φit, this becomes

ET
βMT+1

MT

rjT+1

ξT+1

=

{
λjT

(
1

ξT
− φjT + ajTφ

j
T

)
Bj
T − λ

j
T

(
1

ξT
− φjT−1

)
Bj
T−1

}
−
{
λrfT

(
1

ξT
− φrfT + arfT φ

rf
T

)
Brf
T − λ

rf
T

(
1

ξT
− φrfT−1

)
Brf
T−1

}
.

Lemma 15. Equation (27) holds

Proof. The generalized optimality condition (28) for k period rollover is[
covT

(
ln ξT+1+k, r

j
T+1

)
+ covT

(
Ak
T+1, r

j
T+1

)]
'

(
1− arfT
RrfT+1

)−1 (
arfT − a

j
T

)

−
ξT+1+k

2

(
1− arfT
RrfT+1

)−1{
λjT

(
1

ξT
− φjT + ajTφ

j
T

)
B
j
T − λ

j
T

(
1

ξT
− φjT−1

)
B
j
T−1

}

+
ξT+1+k

2

(
1− arfT
RrfT+1

)−1{
λrfT

(
1

ξT
− φrfT + arfT φ

rf
T

)
B
rf
T − λ

rf
T

(
1

ξT
− φrfT−1

)
B
rf
T−1

}
.
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Under the assumptions φ
j
T = φ;ajT = arfT and λrfT = 0 we get that{

λjT

(
1

ξT
− φ+ aTφ

)
B
j
T − λ

j
T

(
1

ξT
− φ

)
B
j
T−1

}

=
BT

Y T


Y Tλ

j
T

qjT

(
1

ξT
− φ+ aTφ

)
qjTB

j
T

BT

−
Y Tλ

j
T

qjT

(
1

ξT
− φ

)
qjT−1B

j
T−1

BT−1

×
qjT
qjT−1

BT−1

BT︸ ︷︷ ︸
ω̂
j
T−1


=
BT

Y T

{
Y Tλ

j
T

qjT

(
1

ξT
− φ+ aTφ

)
ωjT −

Y Tλ
j
T

qjT

(
1

ξT
− φ

)
ω̂
j
T−1

}

=
BT

Y T

{
Y Tλ

j
T

qjT

(
1

ξT
− φ

)(
ωjT − ω̂

j
T−1

)
+
Y Tλ

j
T

qjT
(aTφ)ωjT

}

Define matrix ΛT

ΛT =


Y Tλ

1
T

q1T
0 ...

Y Tλ
2
T

q2T
...

... ... ... ...


Stack up for all j to get

covT
(
ln ξT+1+k, rT+1

)
+ covT

(
Ak
T+1, rT+1

)
' −

(
1− arfT
RrfT+1

)−1 [
aT − 1 · arfT

]

−

(
ξT+1+k

2

)(
1− arfT
RrfT+1

)−1(
BT

Y T

)(
1

ξT
− φ

)
ΛT (ωT − ω̂T−1)

−

(
ξT+1+k

2

)(
1− arfT
RrfT+1

)−1(
BT

Y T

)
(aTφ) ΛTωT

Substitute in the budget constraint to get
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∞∑
t=1

ETwT+t × ET
qrfT+tXT+1+t

YT+t
× covT

(
lnQT+1+t

T+1 , rjT+1

)
+

∞∑
t=1

ETwT+t × covT

(
X⊥T+t

ETYT+t
, rjT+1

)

−

 ∞∑
t=1

ETwT+t ×
ET ζT+t(

1− arfT
)
qrfT

(ajT − arfT )

−
∞∑
t=1

ETwT+t × ET qrfT+t

YT+1+t

YT+t
ζT+1+t × covT

(
At
T+1, r

j
T+1

)

−

(
qrfT BT

ȲT

)(
1− arfT
RrfT+1

)−1

1

qrfT

( ∞∑
t=1

ETwT+t × ET ζT+tξT+t

)
︸ ︷︷ ︸

χT>0

Y Tλ
j
T

qjT

[(
1

ξT
− φ

)(
ωjT − ω̂

j
T−1

)
+ (aTφ)ωjT

]

'

∑
i≥1

covT

(
riT+1, r

j
T+1

)
ωiT

 qrfT
BT
YT

.

In matrix form,

qrfT
BT
YT

ΣTωT '
[
ΣQ
T ΠQ

T + ΣX
T +

(
Σa
TΠa

T − ΣA
TΠA

T

)]
wT .

−

(
qrfT BT

ȲT

)
χTΛT

[(
1

ξT
− φ

)(
ωjT − ω̂

j
T−1

)
+ (aTφ)ωjT

]
When the market structure is zero coupon bonds of all maturities, we have shown that qrfT ΣT '
ΣQ
T . The zeroth order version of (26) means that

0 =

{(
1

ξT
− 1

)
− βMT+1

MT

R
j
T+1

(
1

ξT+1

− 1

)}
+ ajT

Stationary taxes means that ξT = ξT+1 and the previous equation is

0 =
(

1
ξT
− 1
) {

1− βMT+1

MT

R
j
T+1

}
+ ajT .

The zeroth order version of (9) says that 1− βMT+1

MT
R
j
T+1 = ajT and therefore we get that

0 =
ajT
ξT

=⇒ aT = 0.

Following the same steps as in part (ii) of the proof of Lemma (11), we get

ωT ' (1− qΓ) w +

(
YT
qBT

)
Σ−1
T

[
ΣX
T + ζT

(
q−1

1− arfT
Σa
T − qΓΣA

T

)]
w.

− χTΣ−1
T ΛT

[(
1

ξT
− φ

)
(ωT − ω̂T−1)

]
.
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