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Abstract

We develop a novel class of perturbations to study the optimal composition of
a government’s debt portfolio. We derive a formula for the optimal portfolio and
show that it can be expressed in terms of estimable “sufficient statistics”. We use
U.S. data to calculate the key moments required by our theory and show that they
imply that the optimal portfolio is approximately geometrically declining in bonds of
different maturities and requires little rebalancing in response to aggregate shocks.
Our optimal portfolio differs from portfolios prescribed by existing models often used
in the business cycle literature and also from those adopted by the U.S. Treasury.
The key normative differences are driven by counterfactual asset pricing implications

of standard models.



1 Introduction

In this paper we develop a framework to analyze how a government should manage
its portfolio of debts and other financial assets. The government in our economy
collects tax revenues, spends them on transfers as well as non-transfer expenditures,
and uses a range of securities to smooth aggregate shocks to maximize its welfare. To
break Ricardian equivalence, we assume that some agents cannot participate in the
financial markets. We develop a novel class of pertubations that allow us to study
the optimal composition of government portfolio in relatively general settings. Using
these pertubations, we derive a formula for the optimal portfolio and show that it
can be expressed in terms of (i) estimable “sufficient statistics” — such as covariances
between returns and macro aggregates such as output or primary deficits, elasticities
of bond prices and elasticity of tax revenues with respect to debt issuance, as well as
(ii) parameters that determine government’s attitude towards risk. In the benchmark
case when the government and private agents share attitudes towards risk, all the
preference parameters drop out. Then, applying our formula to data on bond returns
and macro aggregates in the U.S., we find that the optimal portfolio involves issuing
outstanding debt largely in form of a real ‘consol’ so that the amount of payments
due in future periods decay exponentially with very little rebalancing over time.

The economic forces that drive the optimal composition are made transparent
by decomposing the expression for the optimal portfolio in four intuitive terms: (i)
rollover risk, which arises from fluctuations in the risk-free rate; (ii) relative hedging
concerns that are captured by the difference between covariances of primary deficit
and output with holding period returns on debts adjusted by the volatility of holding
period returns; (iii) price impact of the government embedded in the elasticities of
bond prices with respect to changes in bond supply, and (iv) a term that captures
fiscal externality, i.e., the sensitivity of tax revenues with respect to changes in the
portfolio composition of the debt.

The first term describes how the government can structure its portfolio to minimize
risk from fluctuations in future interest rates. When all agents have the same attitude
towards risk, uncertainty about future debt payments represents pure cost and, all
other things being equal, the agents and the government would like to structure
their portfolio to minimize it. The fluctuations in future rates, and in particular

holding period returns, also provides hedging opportunity, which is captured by the



second term. Here the key object is the difference in hedging opportunities that the
fluctuation in these returns offer to the agents and the government. When all agents
in the economy share the same attitudes towards risk, the first two terms, that is,
the terms capturing rollover risk and hedging considerations, do not depend on the
preference specification. Finally, the price impact and the fiscal externality terms in
the formula captures the extent to which the government can use its monopoly power
in issuing government debt for redistribution. If the changes in the composition of
debts affects debts prices and tax revenues, the government can exploit this power to
redistribute resources between investors in debt and transfer-recipients.

All the terms that appear in our formulas have direct empirical counterparts in
the data. The existing empirical evidence from studies that looked at the quantita-
tive easing programs of the federal reserve suggests that the price impact and fiscal
externality terms are small. We then document in the data the magnitudes of first
two terms: rollover risk and hedging, and study the implications for the debt man-
agement. We find that the rollover risk swamps hedging benefits and the optimal
portfolio is primarily structured to minimize interest rate risk. This risk is minimized
if the government issues pure discount debts of different maturities in such a way that
the share of the market value of debt in a given maturity is exponentially declining
in that maturity; alternatively this portfolio can be replicated by issuing a consol.
We also find that short debt is a relatively better hedge for the government than for
agents, and so the optimal portfolio has shorter maturity than the risk-minimizing
portfolio, especially if the level of outstanding debt is small. Quantitatively, these
hedging benefits are modest; optimal portfolio weights are stable over time and re-
quire almost no rebalancing in response to shocks.

Our findings contrasts to a large macro literature on optimal term structure of
government debt that goes back to the seminal work of Angeletos (2002) and Buera
and Nicolini (2004).1 A typical finding in that literature is that in the canonical neo-
classical growth model the government should issue long-term debt valued at tens or
even hundreds times GDP while simultaneously taking an offsetting short position in
short-term debt of a similar magnitudes. The optimal portfolio massively rebalances
after aggregate shocks. Furthermore, the composition of an optimal portfolio is very

sensitive to the menu of traded maturities. In contrast, we find moderate portfolios

1Other examples of such findings are in Farhi (2010); Faraglia et al. (2018); Lustig et al. (2008);
Debortoli et al. (2017)



which are fairly stable over time. We show that the difference in findings is driven by
counterfactual implications of the neoclassical growth model regarding the behavior
of holding period returns on government debts. Standard parameterizations imply
that such returns are very smooth and highly correlated with fluctuations in primary
deficit, and as a result also with each other across maturities. This allows the gov-
ernment to hedge its shocks very well but it needs to take extreme debt positions to
do so. Viewed through the lenses of our formula, such models imply that the relative
hedging term is very large and time-varying. In contrast, we show that in the U.S.
data it is very small and stable.

In addition to the macro Ramsey literature mentioned above, our work builds on
two more strands of literature. The broad spirit of our approach, in that it derives
optimal formulas in terms of empirically observable objects is closely related to the
“sufficient statistics” literature used in public finance (Chetty (2006, 2009); Piketty
and Saez (2013)). To derive interpretable formulas that literature often uses first order
approximations of optimality conditions. This approach is not helpful for the optimal
portfolio problems which can only be obtained by using second-, third- and even
fourth- order approximations. Applying these approximations directly is impractical
as they yield intractable high-order polynomial expressions. We instead pursue a
different type of perturbation with respect to the amount of risk in the economy,
that builds on the approaches developed by Samuelson (1970) and applied in other
contexts by Guu and Judd (2001); Devereux and Sutherland (2011).

The second strand of literature we build on is portfolio problems studied in fi-
nance (e.g. Campbell and Viceira (1999); Viceira (2001); Campbell and Viceira
(2001)). That literature typically thinks of an individual investor who trades at
exogenously specified prices without taking a stance on who stands on the other side
of those trades. This assumption is problematic for studying optimal government
policies, since the preferences of the government, via social welfare functions, and
the preferences of agents are closely linked. Incorporating this “general equilibrium”
considerations can have a dramatic effect on the optimal prescriptions for managing
portfolios. In particular, we show that one prediction of the “partial equilibrium”
formulas that come from our analysis is that the government should issue only ultra-
short debt (because it is the cheapest in the data), invest proceeds in a various risky
assets to chase excess returns, and to rebalance its the portfolio frequently. All these

implications disappear once the government takes into account the preferences of the



agents it trades with.

The paper is organized as follows. In section 2 we develop our approach in the
simplest settings, which we dub “a small government” case. The key assumption in
this section is that the size of the pool of investor with whom the government trade is
large, so that small changes in the composition of debts in government portfolio have
no impact on debt prices. This assumption allows us to develop our main insights in
the most transparent way. We then show that they extend to more general settings
in section 3. In section 4, we use data on U.S. government debt, output, and primary
deficit to document the key objects that appear in our formulas that characterize
the optimal debt composition. In section 5, we calibrate a version of the neoclassical
growth model which is extended so that it can match the key moments implied by
the theory and evaluate quantitatively optimal the Ramsey policies. We also compare

optimal portfolios to those held by U.S. Treasury. Section 6 concludes.

2 Theory: The small government case

In this section we use a simple model to illustrate our core insights. Time is discrete
and lasts 7 < oo periods. There are two sets of agents, “rich” (R) and “poor”
(P), of measures 1 — A and A respectively, and a government. Rich agents receive
exogenous stochastic income Y; in period ¢, pay taxes, and trade a set of I +1 < 00
securities b, = {5@};0 at prices g, = {q'},_, that pay dividends d;;; = {di +1}¢I:0‘
The dividends can be either deterministic at the time when the security was first
issued (corresponding to real bonds of various maturities and coupon payments) or
stochastic. Security i = 0 is a one period discount bond.? Poor agents are hand-to-
mouth and receive no income other than government transfers 7;. The government
collects tax revenues, pays transfers to the poor as well as exogenous non-transfer
expenditures, and trade securities with the rich agents.

It will be convenient to normalize all units in the government’s budget constraint

by the number of the poor agents. Let T, (Y;) and G; be the amount of tax revenues

2A clarification might be helpful about the set of securities. The set of I securities includes all
securities that can ever be traded. For exaple, in the economy in which agents can trade 2 period
bonds, set I includes infinite many of such bonds indexed by the time when they are issued. It
will be understood throughout that agents cannot trade such short-lived securities before they are
issued or after they have matured. Keeping this convention about the set I allows us to avoid a
cumbersome notation.



and non-transfer expenditures per poor person, where Y, is an arbitrary differentiable

function. Thus, the government budget constraint reads
T, + q.B, = S, + (di +a) B,

where S; = T, (V;) — G, and B, is a vector of securities that the government holds,
again per unit of poor agents. Negative values of Bt correspond to government issuing
debt in that security. Since we mainly think of these securities as debts, they must

be in zero net supply and satisfy feasibility
(1-\)b, +\B;,=0. (1)

. . )\
The taxes that a rich agent pays are given by ﬂ”rt (Yt) |
Agent j € {P, R} has preferences Eq Y ;=) f'niw’ (¢]) , where ¢] is consumption
of agent j in period ¢, u? (+) is strictly concave, twice differentiable and satisfies the
Inada conditions, and 77{ is an exogenous stochastic process capturing preference

shocks. Government objective is given by welfare function

Eo Zﬁt P(T) +MEOZ@” ()

for some Pareto weight . > 0 on the rich agent. We consider the problem of optimally
managing portfolio B, to maximize this welfare.

Our baseline case is when the fraction of poor agents to agents is small, A — 0.
We refer to this case as a “small government”, since government debt and taxes are the
infinitesimal part of rich agents’ income and their consumption satisfies c¢f* = Y;. The
main simplifying feature of this economy is that prices for government debts do not
depend on government portfolio. This case not only illustrates most of the key insights
from richer models but also naturally connects to both partial equilibrium portfolio
choice problems studied in finance and open economy sovereign debt literature in
international macro.

Before we proceed we want to make several points about this set up. Firstly, in
this baseline model we treat both income Y; and government taxes T, (-) as exogenous.
We do that only for transparency. All the arguments in this section go through when

income of the rich is endogenous and is determined by the optimal supply of labor.



As for the choice of tax function, our approach to solving portfolio problem applies
to any tax schedule, whether it is chosen optimally or not. Secondly, we assume
that poor agents cannot access financial markets. There are two reasons why we
make this assumption, one empirical and one theoretical. Empirically, most of the
recipients of transfers appear to have little or no financial assets and exhibit very little
consumption smoothing. The hand-to-mouth assumption appears to be a reasonably
empirical description of their behavior (e.g. Mankiw (2000)). Theoretically, in order
to study optimal management of government debt one needs to introduce some friction
to break the Ricardian equivalence, and limited asset market participation appears to
be an obvious one.® Finally, the assumption that there are only two types of agents
simplifies the exposition without changing our main results.

Let B, = B, be the market value of debt, B! = ¢/B! be the market value of
holdings of security i, wj = Bj/B; be the share of the portfolio allocated to security

di 414

i, and R}, = B be the holding period return. In this new notation we can
t

re-write government’s budget constraint as

Tiv1 + By = Sia + (R?H +> wi (R — R?ﬂ)) By. (2)

i>1

Take any path of debts and taxes, and consider the following perturbation: in any
period ¢ decrease wy by e and increase w; by d‘c where >, 8’ =1 and then adjust
transfers in period ¢ 4+ 1 to absorb any change in income éenerated by this pertur-
bation. This perturbation leaves the market value of debt B; unchanged in all peri-
ods and only affects transfers in ¢ + 1. The reallocation generates stochastic return
> o1 0'wi (Rl — RY,,) Bie in period t + 1. The welfare effect of this perturbation as
€ —; 0 is then given by

BBy (Tiin) Z 8'w;ri 11 By,

i>1

i — pi 0 o .
where r; | = R;, | — R;,, are the excess return of security ¢ over the one period bond.

If the portfolio in period t is chosen optimally, then there should be no gain from

30ne common perception, based on the intuition from the representative agent economies, is that
the introduction of distortionary taxes would also break the Ricardian equivalence. In heterogeneous
agents economies this perception is generally false, as optimally set taxes are distortionary but the
Ricardian equivalence holds (Werning (2007); Bhandari et al. (2017¢)). In any case, as we show later
in this paper our approach and insights extend to such settings.



such perturbation for any 6. Therefore, in the optimum we must have
Em,iluf (Ti41) Tfﬂ = 0 for all 7. (3)

We use this expression to obtain the insights about the optimal structure of the
government portfolio. To this end, we assume that conditional on information in

time t exogenous shocks take the form
)/t—i—s - Y;ﬁ—l—s +0-5Y,t+su Gt-{—s - Gt—i—s +UgG,t+S7 77{+s = ﬁg+s +0_5£,t+s for .] € {Rv P}u

where {YHS, Giis 775 +s}s,j are deterministic sequences, & s = { Eyvits: EGits Sf;,t +s}s,j
are shocks that have bounded support and E;&,s = 0 for all s > 0, but otherwise
follow an arbitrary joint stochastic process, and ¢ is a positive scalar. We derive
the approximations of our endogenous variables by considering Taylor expansions of
various orders with respect to o. Let 0., 0ys, ... be first-, second-, and higher- order
derivatives with respect to o evaluated at ¢ = 0. We use bars to denote Oths order
approximations of random variables, so that a typical random variable X;, , has an ex-
pansion Xyis = Xt s+00,Xeys+ 302050 X145+ 0 (0%). Note that 9, X;4s and 0,0 Xpys
are random variables that depend on the realization of shocks &1, ..., &4 s. Also note
that B0, Xiys = B0roXiys = 0 for all s > 0 when Xy € {Viss, Gras, 174, T}
Rich agents optimality condition satisfies a textbook asset pricing equation
O (Y0) = Sl (Vi) LI for @)
t

where u/ denotes the derivative of u7. Equation (4) can be re-written as Byt ull (Vi) ri, =

0. Its zero- and first- order expansions imply that
o1 = EDyryyy = 0. (5)

This equation shows a familiar insight that all securities to the first order approxima-
tion must pay the same expected return in equilibrium. Let %ai = E/0porj,q be the
risk premium, which at this point can be either positive or negative. Differentiate (3)
twice and use (11) and (5) to obtain

T, A , .
%1 (a;‘t + Et&,rgﬂ&,nﬁrl) = 0,77, 10,141 for all 4, (6)

Qi1



where af’ | is the coefficient of the relative risk aversion of the poor, —u?, (Tt+1) Tyy1/ul (Ttﬂ).

Using the budget constraint to substitute for 9,7;,1 we obtain

T,
1;'_1 (at + COUt (T]i:_l, rt+1))—COvt (St+17 Tt+1)+COUt (Bt+17 Tt+1)—BtthCLTt (Tt+1> = 0.

(7

This equation is the first substantive result of this section. If one is willing to take

a stance on the form of the preferences of the poor agents, all other variables in this
equation can be directly estimated using data on the returns of government bonds
of different maturities, tax revenues, and the market value of debt. Using these
estimates one can test whether it holds in the data empirically. A rejection of this
equation in the data would then indicate that the government portfolio is suboptimal.
Furthermore, one then can use this equation to see the direction in which the portfolio
can be rebalanced to improve welfare. If the j** row of the vector of the expression on
the left hand side of (7) is positive then welfare is improved by increasing the share of
government’s portfolio in the j** security and reducing it in the one period bond. The
opposite rebalancing improves welfare if the j* row is negative. The general spirit
of this exercise would be similar to the sufficient statistics or tax reform approach
in public finance (Chetty (2009); Golosov et al. (2014)), but unlike that literature,
that focuses exclusively on the first order effects of policy changes, our approach
allows us to consider higher-order effects that are central questions of the portfolio
management. We show later in the paper that the effects of portfolio rebalancing on
asset prices or tax revenues are easily incorporated into this formula.

One limitation of formula (7) is the it is not very transparent about the economic
principles that govern the optimal management of government’s portfolio. In partic-
ular, the covariance of returns r;,; with future market values of debt B;,; depends
on the level of debt and on its portfolio composition, all of which are endogenous
variables. To understand these economic principles better we now re-write these
equations. In the text we assume that assume 7 = oo and that {17}, G, 77{ } y do not
depend on time t. As we show in the appendix these assumptions are not important
for our results.

Sum the budget constraint (2) forward to get

Ei Z Qi1 4sThrs = B Z Q41,4551 +s + [R?H + wt""t] By, (8)
s=1 s=1



where ()i+1.4s is the inverse of the realized returns on the government’s portfolio

between periods t + 1 and ¢ 4+ s. Taking a Taylor expansion of this equation we get

Eyq Z B (05 Ti4s — 05 Stys) = [aoR?+1 + wtaa"“t] B+ (S — T)E¢py Z 06 Q41,45
s=1 s=1
(9)

The left hand side is the change in the present value of government’s primary deficit.
It is equal to change in the returns on government portfolio(the first term on the
right hand side) plus the effect of change in the expectations about future interest
rates (the second term on the right hand side). Since to the first-order expected
excess returns are zero we have E;110,Q¢+14+5s = Ei110, (q?+17t+2 X oo X q?+s_17t+8) SO
that the last sum in (9) is simply the sum of changes in long risk-free rates of all
durations. The last term takes this form because we assumed that S’Hs — THS are
independent of s; more generally this term is the infinite weighted sum with weights
proportional to Sy — Ti1s (see the appendix). Define Q5% = Eiq Y oo Qri1.445 and
PVi1(X) =Ey1 Y oo, B X5 for any random variable X.

A simple perturbational argument that lowers transfers in period ¢ and increases
them in period ¢+ s with adjustments to the holdings of the s maturity bond implies

that the optimal allocation should also satisfy

Ei1105Tt1s = O5Ti1 — TPP (ﬁl_sEtHaaQtH,tJrs - (Et+1aa775rs - 30771?11)) 5

where p? is the elasticity of the intertemporal substitution. With time separable
preferences it coincides 1/a® but this restriction is not necessary for our analysis.

Substitute this expression into (8) and rearrange to get

aaﬂ-i—l
1-p

P
= 0y PVis1 (S) + [0,RYyy + wiore] By + (S — T)0,Q7%, + Tp" (ijl — PV, (Zgj)) .
t+1

%Bt. Substitute this and

Government’s budget constraint implies that 7' — S

10



previous equation into (6) and rearrange to get

T
Biwicovy (i1, 1) = ap—p——— — covy (PViy1 (5) , 7e41) (10)
o (1-p)
1 n P 00 APV T/tlis
+ BBt +Tp" | cov (Q73 1, Te41) — To" covy | PV, 7 STt | -
b1

This equation determines the optimal portfolio composition for the government.
It has several elements that are familiar from individual investor portfolio analysis in
finance, and some new ones. The first term on the right-hand-side captures agents’
attitude towards financial risk. It is related to the textbook portfolio choice problem
(see Samuelson (1970)) that abstracts from other sources of risk featured in this
equation or from possible variation in risk or risk premium, and derives that the
solution to investor’s risk return trade-off is given by % [cov(ry1, 7141)] " Campbell
and Viceira (1999) derived time-variant version of this term, observe that in the data
the risk premium a; exhibit a lot of predictability, and argued that the benefits of
rebalancing portfolio and timing the markets are large. Since T = S + %Bt one
can also see the insight of Viceira (2001) that an agent who’s revenues come mainly
from non-financial assets should act in approximately risk-neutral way and invest a
large fraction of her portfolio in a risky asset. The second term on the right hand
side of (10) captures hedging benefits of financial assets with non-financial risk and
generalizes results derived by Viceira (2001). The third term captures concerns about
fluctuations in future risk-free rate. Campbell and Viceira (2001) derived a version of
it and observed that as the risk version goes to infinity its importance grows relative
to the first term, so that a very risk-averse investor with no outside income should
structure her portfolio to minimize the risk of future interest rate fluctuations. The
fourth term on the right hand side of (10) is new.

It is tempting to apply this partial equilibrium analysis to draw implications for
government’s portfolio management. Since most of transfers are financed out of tax
revenues and interest income is relatively small this equation would suggest that
the government should invest a lot in the assets with positive excess returns and
rebalance frequently (for example, Lucas and Zeldes (2009) think about government
portfolio allocations essentially from this point of view). Under such interpretation
the Treasury should be running a giant hedge fund by issuing large quantities of short

debt that are used to finance leveraged investments into various risky securities. In
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our view this approach would be misleading. It ignores the other side of the market,
the investors who trade those assets with the government, and the fact that asset
prices are shaped by their asset demand in general equilibrium.

The behavior of rich agents is characterized by their optimality conditions that
can be shown to be _

atﬁ = COoVy (Y}H, "“t+1)

and

Ei1105Yi4s = 05 Y1 — YPR (ﬁl_SEtHaaQtH,HS - (]Et+1(3077,i8 B 60775%1» :

These equations impose additional restrictions on behavior of returns on the one
hand and preferences of rich and poor agents on the other. Although in principle
one can come up with some preferences to make investors effectively irrational and
irrelevant for government’s portfolio choice we are skeptical about the validity of such
suppositions. In our view, the most natural benchmark to consider is the one in which
the rich and poor agents share the same preferences. To make our analysis simple we

assume that

i () =0 o j e (Y. (1)

l1—«

Under this assumption, the optimal portfolio expression becomes

BBtCOUt (Qﬁl, Tt+1) (].2)

5
_ Y _ S
+ |:TCOUt (PVtJrl <?> 77‘t+1) — Scovy (PVtJrl (E) 7Tt+1)1 :

This is the central equation of this section, and it is crucial to understanding our

Bicovy (Tpq,Tipn) wy =

numerical results. the optimal portfolio is determined by two considerations. The
first term on the top line captures the risk in future interest rates that we call the
rollover risk. This risk is proportional to the level of debt B; that the government
needs to rollover. The second one, written in the square brackets on the right hand
side on the bottom line, captures the relative hedging benefits of the risky securities
for rich and poor households. Parameters capturing risk aversion or expected excess
returns are absent from this formula because the only gains from trade comes from

differences in hedging benefits that the bonds offer to different market participants.
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Divide both sides with B; and let w be the vector of portfolio shares. The discussion

above can be summarized with w; = w/* + w/’ and the two components given by

1— _
wﬁ = 3 ﬂcovt (Teg1,Teg1) " covy (Qtoip T't—i—l) (13)
~1
_ Y - S
w{{(Bt) = cov (rt;; rt+l) |:TCOUt (P‘/t-i-l (7) ,Tt+1> — SCOUt (PW+1 (E) ,rt+1):| .

(14)

One advantage of this formula is that all objects that appear in it are expressed
in terms of statistics that can be estimated in the data directly. We do that in the
next section. One useful and empirically relevant benchmark case for us will be the

one in which the relative hedging benefits are small.

Proposition 1. Suppose that cov, (PViy1 (Y),r1) = covy (PViyq (S),7441) = 0. If
the government can trade pure discount bonds of any maturity, then the optimal share
of the portfolio holding in bond that matures in j periods is given by w] = (1-8)p
for all t.

This proposition gives a remarkable simple prescription to the optimal public debt
management. The government simply allocates geometrically declining share of its
portfolio in debts of longer maturities. This shares never change, so the portfolio is
never rebalanced. This portfolio ensures that the same amount of payments is due in
each period equal to the difference S — T. Thus, this portfolio ensures that maturity
of debt payments is perfectly matched with expected primary deficits, an effect that
we refer to as the maturity matching.

Proposition 1 assumes that the government has access to infinitely many bonds.

This assumption can easily be relaxed as the next two corollaries show

Corollary 1. Suppose the assumptions are as in Proposition 1 but the government has
access to only pure discount bonds for the first I periods. Then the optimal portfolio
wl(I) satisfies w](I) — (1 — B) B as I — oo.

and

Corollary 2. Suppose the assumptions are as in Proposition 1 but the government
has an access to a consol that pays one unit of consumption in each period. Then an

optimal portfolio is to allocate all debt into consol and nothing to other securities.
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The first corollary comes from the fact that the importance of matching later
maturities is declining with the rate 5. So by even having access to a finite number of
bonds the government can capture most of the gains by following the allocation rule
of proposition 1 with finite but reasonably large I. The second corollary that just
one security - a simple consol - allows to eliminate all the rollover risk. The intuition
for this result is that such a consol is exactly equivalent to the portfolio of discount
bonds described in Proposition 1. This result also gives us a natural benchmark to
consider in a richer model where additional effects are present, where we can capture
intuition for the additional effects by considering a portfolio of only two securities, a
one period discount bond and a consol.

In data, the covariances mentioned in Proposition 1 are not zero but are slightly
negative. To understand how results change relative to the implications of Proposi-
tion 1, it is useful first to assume that G, = 0 and % = (1 + ) %. The motivation
behind this case is as follows. In the data, most of tax revenues are spent on transfers
of various sorts, the share of revenues spent on pure public goods, such as military or
infrastructure, is fairly small, especially at the federal level. This motivates us setting
G = 0. Over the business cycle government primary deficit fluctuates much more
than output, the effect driven by the progressivity in the tax code and various auto-
matic stabilizers in the transfer system. We capture this progressivity by a parameter

x > 0. Under these assumptions equation (12) becomes

S
Bicovy (T, Tegp1)wy = {((1 —B) By — $7) covy (PVip1 (Y) ,re4) | +

Bicovy (Q?-T—la "“t+1) .

In the data, covariances cov; (Y, r{ +1) are weakly negative. This has several implica-
tions. Firstly, issuing long debt has additional costs not captured by the assumptions
of Proposition 1. Since the returns on the long debt are negatively correlated with
output and government’s income is more volatile than output, security with a payoff
of the long debt offers a more valuable hedge for the government than for private
agents. This implies that issuing long debt carries additional costs that need to be
balanced against the rollover risk. Secondly, the optimal portfolio weights w; are
decreasing in B, holding everything constant. Since negative values of B, imply that
the government is in debt, highly indebted governments should lengthen the maturity
of its portfolio. All these insights become particularly transparent when we assume

that the only long debt that the government has is consol. In which case equation
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(12) simple becomes

S > covy (PVt+1 (Y) 77”533801)

wtconsol =14+ ((1 o ﬁ) . xB %
t

vary (rfjﬁs"l)

To the extent that the fluctuation in asset prices is much higher than fluctuation in
output, it implies small departures from the portfolio rules highlighted in Proposition
1 and modest amount of rebalancing.

Although we mainly thought about our bonds as a riskless real securities, nothing
in our derivations required that. The analysis equally applies if payout d; is stochas-
tic, either because the real asset itself is risky (for example, if it is stock market) or if
the asset asset is riskless in nominal terms. Thus, it can be directly applied to broader
questions about how the government should manage its portfolio of investments. One
can ask, for example, whether it is beneficial to invest in the stock market. In the
data stock market returns co-vary positively with output, so stock market is a bad
hedge. When taxes are progressive, as in the example above, this implies that it is a
worse hedge for the government than for private agents, so that the relative hedging
in equation (12) is negative. Thus, investing in the stock market would unambigu-
ously lower welfare if the government also can issue bonds of the type mentioned in
Proposition 1 or its corollaries. It is optimal, if anything, to short the stock mar-

stock_mrk

. . . Y; tock_— k
ket. However, since var; (rt 1 > is much higher than cov; ( e

v o Tt ) mn

the data, the benefits of shorting the stock market will be low and it is optimal to

assign only a very small share of overall portfolio to short positions in stocks.

2.1 Connection Ramsey literature on debt management

The prescriptions for the optimal debt management that we derived in the previous
section are seemingly at odds with Ramsey literature on optimal debt management.
In his seminal work Angeletos (2002) showed that in a canonical neoclassical economy
the government can construct a portfolio of uncontingent debts of various maturities
to fully hedge its risks. Buera and Nicolini (2004) studies quantitative properties
of such portfolio and found that it takes an extreme form. In their calibrations
government’s positions in in debts of different maturities are tens or even hundreds
times greater than GDP, and the budget is balanced by buying equally huge debts in

other maturities issued by private sector. Investments in debts of similar maturities
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are often vastly different but on balance government favors issuing very long debt and
buying short debt of households. Small aggregate shocks trigger very large rebalancing
of government portfolio. These findings have been confirmed in numerous calibrations
and are now broadly accepted (Farhi (2010); Lustig et al. (2008); Debortoli et al.
(2017); Faraglia et al. (2018)) but they contrast sharply with our results.

The key reason for this finding comes from the fact that neoclassical models have
counterfactual implications for the prices of financial assets, such as government
bonds. Those models predict that shocks to primary deficit are highly correlated
with bond returns, and that the volatility of those returns is low. This implies that
the government in the standard neoclassical economy can achieve complete market
allocations by buying and selling bonds of different maturities but it needs to take
extreme positions to leverage fluctuations in those returns. Since in the data returns
show little correlation with deficits and are very volatile, these normative prescriptions
of the neoclassical models are not robust.

A simple way to illustrate this using our baseline setup is to assume that out-
put InY; follows an AR(1) process with persistence ¢ and this is the only source
of risk. It is easy to verify that 0,PV, 4 (%) = [L} 0,logY; 1 and (907“533801 =

1-Bo
[%} OylogY;;1 when Y; = Y. Thus, the output and returns are closely corre-

lated but volatility of returns is much smaller than volatility of output when shocks

are persistent, o — 1. The hedging term in the optimal portfolio is proportional to
cov (P\/}+1(%)’r§iqsol) _ )
UCL'I’t(rgi’ﬂlsol) a(l—o

are linear and the government needs to finance some exogenous expenditures G > 0,

) which becomes arbitrary large for g close to 1. If taxes

equation (12) implies that

G-(1-pB 1
w;:onsolBt = B; — ( _ B) t ]
Y a(l—o)

When government is in debt, B; < 0, the hedging term is negative. This captures
the fact that poor agents face more risk than rich agents: tax revenues move one for
one with output and consumption but they are used not only to pay transfers 7; but
also non-transfer expenditures G and interest payments on debt — (1 — 3) B,. This
implies that w®'B;, — —o0o as ¢ — 1.* Thus, in line with the usual findings, in

such an economy the government issues an arbitrarily large position in the long bond

4When B; = 0, portfolio share w{°"*°! is undefined but the level of investment in consol wf*™*°! B,
is define and given by the formula above.
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that is partially offset by buying a large quantity of one period debt issued by the
rich. Similar logic implies that small shocks to Y; or B; get amplified triggering large

rebalancing of the optimal portfolio.

3 Extensions

One advantage of the pertubational approach we developed in the previous section is
that it is easy to apply to a variety of settings. In this section we extend our baseline

economy in several different dimensions.

3.1 Preferences, risk, heterogeneity

In our baseline economy we assumed that preferences are time-separable but our
derivations did not rely on this feature. In the appendix we follow essentially the
same steps to extend our results to a version of Epstein-Zin preferences (Epstein and
Zin (1989)), where utility at time ¢ is define recursively as

1
1

Vici =Ei [th—a} e )
W, = (mctl*p + 5\/,517'0)ﬁ :

As long as the preferences of the rich and poor agents are the same all our results from
the previous section extend directly. Given the insights from the previous settings
this is not suprising. When agents share the same preferences, their outlook on risk
and rewards are the same. For this reason the optimal portfolio is structured as a
simple trade-off between eliminating the common roll-over risk of the existing debt
and the relative hedging benefits, emphasized in equation (12).

We chose our baseline specification of preferences with preference shocks n; to
follow Albuquerque et al. (2016). Their set up is a natural starting point for us
as it is the only off-the-shelf model we are aware of that naturally delivers some
of the key salient features of bond prices, such as the upward sloping real yield
curve. Our analysis however is not restricted to preference shocks. Another popular
explanation for variation in asset prices is time-varying volatility (Bansal and Yaron
(2004); Bansal and Shaliastovich (2013)). Technically, it is more complicated to study

the implications of time-varying volatility for portfolio problems as it requires taking
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fourth order expansions of equation (3). However, the basic steps of those expansions
remain unchanged. In the appendix we show how this can be done in a three period
economy, and show that a version of equation (12) also holds in such settings.

In our baseline economy we assumed that income is endogenous. Nothing changes
in our analysis if modify our model to allow agents to choose labor supply given some
stochastic exogenous wage rate w;. The labor supply of agents is unaffected by our
perturbation since all prices are unchanged. As long as the risk aversion and the
intertemporal elasticity of substitution of the rich and the poor are the same (for
example, if preferences between consumption and labor are separable and utility of
consumption is given by (11)) the analysis goes unchanged. This further generalizes
to a version of Epstein-Zin preferences with labor supply as in Karantounias (2018).
It is also straightforward to extend this analysis to multiple agents, since the marginal

utilities of all trading agents must satisfy (4).

3.2 The large government case

We now drop our assumption that the government is negligible relative to the size
of population of agents it trades with and consider arbitrary A > 0. To streamline
the exposition we assume that one of the securities the government can trade is the
consol; this assumption is not necessary for our results but significantly simplifies
proofs.

Similarly to the arguments in section 2, take any equilibrium path of taxes, debts
and bond prices, and consider the following perturbation. Suppose that in period ¢ in
some history h' the government buys € more of security j and sells the same amount
of security 0; the government then increases its holdings in consol in period ¢ + 1 by
W(R{H — R{.,)e and transfers Ty, by %(R{H — RY))e.

This perturbation in general affects prices of all securities that the government
can trade. Let S,f’j be the marginal impact on price of security 7 in period t that
results from this perturbation. By envelope theorem, the impact on utility of the rich

agent from this perturbation is given by

Eo ) 6'nfug (cf) (Z (% - 5-.) 55]’) .
t=0

>0

Combining this with feasibility condition (1) we get that the welfare effect from this

18



perturbation are given by

B Pr (M E, 352, B [ntlj-su(]:j (Ti+s) 7"{+1}
By |28 (S0t (B - BY)) (nFul (1) = 25nfult ()| (15)

The first term of this expression is equivalent to (3) in the previous section. The
only difference is that we smoothed out consumption over time rather than consuming
all the additional return from perturbation in period ¢ + 1. This change ensures that
our price effects are zero to the first order, 8] = 8U§f’j = 0. The second term
captures the redistributory effect of this perturbation. This term depends on three
parameter: on price elasticity §Z’j , the extent to which government rebalances its
portfolio in the original economy Bf?l — BZ, and one how much more the government
values a dollar in the hands of the poor, nful (T}), relative to the dollar in the
hands of the rich, unffuf (cff). Note that the difference in these two terms will
be big only if the underlying tax system, which we took to be arbitrary so far, is
inefficient. Thus, the optimal portfolios will deviate substantially from the ones in
the small government benchmark only if the size of the investor pool is small and
the government substantially rebalances its portfolio over time and the existing tax
system is very inefficient.

We therefore expect price effects to be small in a reasonable calibration for two
reasons. First, the magnitude of the price elasticity term ff’j depends on the size of the
investor pool, and can be in principle estimated in the data. An example of this are
the estimates of the effect of QE policies in the aftermath of the 2008 financial crises,
when the U.S. Federal Reserve bank swapped one debt in its portfolio for another
keeping the total outstanding debt unchanged. This swap is akin the perturbation
considered in this section and, as we document in section 4, studies have found its
effect to be small. Second, as we saw in section 2 the need for substantial rebalancing
is unlikely to be satisfied for realistic behavior of returns.

In fact, it is possible to go one step further. We show in the appendix that a
second order expansion with respect to o yields the following proposition, the poof

of which can be found in the appendix

Proposition 2. There exists constants ¢ and d such that the optimal portfolio at time
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Tsolves

1-p

cov, (rr11,r741)B; ITBTCOUT (I'r+1, Qi‘jrl)

+ [CTCOUT (I‘r+1, P‘/T+1(1/T+t/}7)) — dScovy (I"T+1, PVTH(S}/S))] )

Constants ¢ and d can be expressed in closed forms using the yield curve elastic-
ities. One immediate takeaway from this proposition is that the government price
effects only work through the relative hedging term, i.e. when there gains from trade

between the government and the rich agents. This implies the following corollary
Corollary 3. The conclusion of Proposition 1 and Corollary 2 holds for any A > 0.

The result of this corollary can most readily seen in the case where the government
enters period 0 with all debt held in the consol. Absent price effects, the assumptions
of Proposition 1 imply that the government will, to our order of approximation,
wish to hold a constant maturity structure matching that of a consol. This portfolio

structure would then imply Bi | — Bi = 0 for all 4 and ¢ > 0, which allows us to

conclude that portfolio of Proposition 1 is in fact optimal.

3.3 Endogenous labor supply and distortionary transfers

To be written

3.4 Debt management without commitment

To be written

4 Data

Proposition 1 gives a simple prescription for the the rollover risk, wf? — to issue
debt such that the shares exponentially decline with maturity. The relative hedging
component, wi?(B;) quantifies how much the optimal portfolio should deviate from
this prescription. Our theory says that the magnitude depends on the level of out-
standing debt B; and the two ratios of conditional covariances to variances, namely,

COUt (rt+1, rt+1)71 COUt (PV;H-I (Y) ,'r't+1) and COU¢ (rt+1, I't_;,_l)il COU¢ (P‘/;f—‘rl (S) a’rt-i-l)-
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To compute these covariances, we use data on bond returns and measures of Y
and S for the U.S. The sample period is 1980-2017 and the frequency is quarterly. To
construct returns we use data from Center for Research in Security Prices (CRSP). We
obtain the holding period returns on portfolios of nominal bonds that have maturities
0-1 years, 1-2 years, 2-3 years, 3-4 years, 4-5 years, 5-10 years, more than 10 years,
respectively, from the Fama Portfolio files. We also construct a summary measure
of returns by taking a weighted average of the returns across maturities with the
weights governed by the fraction of U.S. outstanding gross federal debt (less Thills)
in the corresponding maturity bins. We assume that the bondholders’ labor income
is proportional to GDP and use the growth rate of real GDP per capita from the
national income and product accounts (NIPA) to measure Y;. Finally, to compute S;
we use federal current tax receipts (including contributions to social insurance) less
defense spending, also from NIPA.

Our theory abstracts from inflation risk and requires us to construct holding period
returns on real bonds. Conceptually, inflation-indexed bonds (TIPS) can be using to
construct prices of real bonds. However, for the U.S., the data for TIPS is available
only from 1997 and for a limited set of maturities. Instead, use the relationship
between nominal and real bonds an assume a stochastic process of inflation to recover
holding period returns on real bonds. Let P(n) and P,(n) be the prices of a zero-
coupon bond at date t that pays of one unit of the numeriare and one unit of the
consumption good, respectively at date ¢ +mn. Let M;;,, and II;;;, be the real
stochastic discount factor and the gross inflation rate between t and t 4+ n. Absence

of arbitrage implies that

P} (n) = By (16)

Using small cap letters for logs, and taking a log-linear approximation of (16), we get
that

pi(n) — Pf(n) = KTy t4m- (17)

The log holding period returns on a real between t and t + 1, hpry equals pyyq(n —
1) — pi(n), and similarly for the nominal bond hpr{ = pf. (n — 1) — pf(n). Equation
(17) then implies

hpry(n) — hprf(n) =B 11,0400 — BT t4n
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Table I: Summary Statistics for Excess Holding Period Returns

0-1yr 1-2yrs 2-3yrs 3-4yrs 4-5yrs 510 yrs 104 yrs Wgt-avg

mean 0.15 0.24 0.32 0.37 0.33 0.50 0.56 0.34
std. 1.21 2.05 2.62 3.02 3.46 3.90 5.63 2.73
p25 -0.43  -0.85 -1.17 -1.50 -1.70 -1.75 -2.28 -1.24
po50 0.06 0.05 0.06 -0.02 -0.2 0.15 -0.46 0.05
p7o 0.55 1.02 1.49 1.83 2.09 2.6 3.29 1.74
corr AlogyY -0.35 -0.34 -0.34 -0.34 -0.32 -0.31 -0.27 -0.33
corr AlogS -0.23  -0.25 -0.25 -0.23 -0.24 -0.22 -0.19 -0.23

Note: This table summarizes the time-series moments for holding period returns in excess of the risk-free rate across
bonds of different maturities. Returns are quarterly and measured in percentage points. The sample is from 1960 Q1
to 2017 Q4. The last column “Wgt-avg” is the weighted average of excess holding period returns across maturities
where weights are the portfolio shares of the federal gross debt in those maturity bins.

We assume that {m} follows an AR(1) process. We then use the Consumer Price
Index to estimate the right-hand side, and back out hpry(n) from hprf(n) for all
n. Finally, we follow Beeler and Campbell (2012) and Schorfheide et al. (2018) to
construct a measure of the ex-ante real rate by regressing the ex-post real rate (3
month T bill rate between ¢ and ¢ 4 1 minus the realized inflation) on a set predictors
that time ¢.

In Table I we summarize the descriptive statistics for the holding period returns
in excess of the risk-free rate across maturities. All units are in percentage points and
quarterly. In our sample, the unconditional means for excess return vary between 15
basis for the below one-year bond portfolio to about 56 basis points for the portfolio
with bonds with maturities greater than 10 years. The standard deviation of the
excess holding period returns is increasing in the maturity and ranges between 1.21
percent for the below one-year bonds and 5.63 percent for the portfolio with more
than 10 years in our sample. We also construct a summary measure of returns by
taking a weighted average of returns across maturities with the weights being the
fraction of outstanding gross federal debt (less Thills) in the corresponding maturity
bins. The last column of Table I summarizes the unconditional statistics for the
summary return.

Our formulas depend on the estimates of the conditional covariance of returns
with output and the conditional variance of returns. To compute them, we estimate
bi-variate VARs with innovations that have time-varying co-variances. The variables

included in that VAR consist of (i) excess holding period returns and (ii) either the
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growth rate of labor income of the rich or the growth rate of tax revenues of the
government less non-transfer spending. We adapt the formulation in Engle (2002).
Let X; = [rt,l,t—r{_u, ;] be a two dimensional vector with the first element being the
excess of holding period return over the risk-free rate (separately for each maturity and
the weighted average measure of return) and the second term z; € {AlogY, AlogS}.
The statistical model for X; is given by

1
Xt = AXt—l + th €t

where Et% = DyR:D; and D; is diagonal with entries {\/h,+, \/hy+} such that for
i€{ry}

2
hiy = ;o + Qje€iy g T Bihit—1

and Ry[ij] = pi’ is a symmetric correlation matrix with p}”’ that has pi = 1 and

follows

Rt - C;thcgl

Qi =(1—a—=b)Q+a(D e 1)(DZie1)" +bQi

with @ = cov (D;e-1)(D;1e-1)") and C; scales Q; such that correlations are
bounded in the unit circle.® As in Engle (2002), we assume that ¢, is standard Gaus-
sian and estimate the parameters {A, a,b, oy 0, e, Br, 0y 0, Oy, By} using Maximum
Likelihood. The covariances and variances that appear in formula (14) can be recov-
ered from the estimates of A and {3}, .

As a first cut we simply plug our estimates of the covariances to calculate the
hedging term in formula (14). For illustration, we use the weighted-average measure
of returns across all maturities, set B; to 20 which corresponds to a debt relative to
annualized output of about about 100% and set the discount factor 8 to 0.99.% A way

to summarize a arbitrary portfolio w; is to consider its Macaulay duration (years)

defined McDur(w) = izlz (fu&)
MeDur(wf) + McDur(wf!). From Proposition 1, the duration of the component

Given its additive property, McDur(w) =

5In particular, C; is a diagonal matrix with the square root of the diagonal elements of Q; at the
diagonal.
6Results are similar for alternative measures of returns.
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Figure I: The left panel plots estimates for the Macaulay duration of the hedging term
from 1980 to 2017. The right panel plots the Macaulay duration (years) of the optimal
portfolio for several values of outstanding debt.

of the portfolio wf is i (ﬁ) or 25 years. In the left panel of Figure I, we plot
MecDur(wl?) and see that it is stable and ranges between 0 to -5% during these
years. A negative number implies that the optimal portfolio shortens the duration
relative to the prescription in Proposition 1. Taxes are progressive in the data, and
hence tax revenues move more than one to one with output which means that the
returns of the long debt offer a more valuable hedge to the government than to private
agents. This implies that issuing long debt carries additional costs that need to be
balanced against the rollover risk, which is captured by the negative found for w/’. In
the right panel of Figure I, we compute McDur(w) for several levels of outstanding
debt after setting the conditional covariances in the hedging term to their average
values. The optimal duration ranges from 16 years to 22 years, which is longer than
the 5 years that we computed for the duration of the current US debt profile.  Thus
a simple application of our formula suggests that the US overweights short maturities
relative to the optimal.

A second statistic that shows up in our formula is the progressivity of taxes,
and which controls how sensitive tax revenues net of non-transfer spending are to
changes in the output. We measure tax revenues as the sum of total tax receipts and

contribution to social insurance, and non discretionary spending as expenditure on

"See Hilscher et al. (2014) for estimates of duration for U.S. public debt.
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defense. We estimate
A log Tax Revenues = cons + 7A log Output

The OLS estimate of 7 is 2.6 (s.e 0.36 ) implying that tax revenues are about two
and half times as volatile as output.

Finally, we turn to the magnitude of the price impact term. We would ideally want
to assess how a perturbation that changes the portfolio of the government keeping
the total debt constant affects bond returns. In the fall of 2010, the Federal Reserve
embarked on the second wave of quantitative easing (QE2) in which it decided to
buy long-term Treasuries by issuing reserves and other short-term securities. Several
studies such as Krishnamurthy and Vissing-Jorgensen (2011), Joyce et al. (2012),
Hamilton and Wu (2012), Chen et al. (2012) analyzed the effects of QE2 on the
prices of bonds, thus providing us a natural experiment to quantify the price impact
term. Using an event study approach, Krishnamurthy and Vissing-Jorgensen (2011)
report that QE2 lowered the yields on 5-year bonds by 11 to 16 basis points and 10-
year bonds by 7-10 basis points. However, they conclude that virtually none of this
effect was through the portfolio rebalancing channel — an effect that arises because
via QE2 the government changes the wealth of the marginal agent and thereby alters
the equilibrium risk compensation all risky assets. Their analysis suggests that the
estimated fall in yields is mostly an outcome of (i) a “signaling” effect, i.e., large asset
purchases of long-term treasuries signaled a policy stance where short-rates will be
low in the future, or (ii) the private sector updating its inflation expectations upwards.
The price impact term in our model exclusively speaks to the rebalancing effect and

our reading of the QE2 evidence is that it is economically small.

5 Quantitative Analysis

We now conduct a quantitative study of an optimal portfolio in a calibrated economy.
Our strategy is to choose parameters values for preferences and shock distributions
that allow the model economy with exogenous government policy to generate mo-
ments that match patterns of returns described in the previous section along with
other U.S. business cycle facts. After estimating these parameters, we compute the

Ramsey allocation, analyze its properties, and contrast our findings with the previous
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literature.

5.1 Calibration

As in section 2, the economy has two types of agents (“Poor”, “Rich”) with relative
mass (A, 1 — A). We assume that the both types of private agents have the same
preferences over consumption and perfectly correlated discount factor shocks. For

i €{R, P} these preferences are given by

EOZ (1_1:).

The government’s preferences are given by

(1—p EoZmﬁt( )1_)+quZnﬁt<%>

where p is the Pareto weight of the poor agents.

The stochastic processes for {Y;,n;, G;} are parameterized as

G .
log log T Gnt, log 7t = log G,
t

t
= gy,t>
Y1 Tt—1

and
Gyt Gyt—1 €yt
logGy| =p+ A |logGioq | +3 |eqy

gn,t gn,t—l en,t

A progressive tax function (as in Heathcote et al. (2017)) is used to raise revenues

from the rich household. Their after-tax income is given by
Vi = Tu(Ys) = Y — nY, Q7

Q= }/;59—19%—_19-

The parameter 7y pins down the level of taxes while the parameter 7, controls how
sensitive tax revenues are to fluctuations in output in the short run. The last term
Q); ensures that the tax function Y is stationary under growth rate shocks. The

parameter € controls the speed with which the short-run elasticity (1 —7;) approaches
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the long-run elasticity which necessarily needs to be one in order to keep the ergodic
distribution of ratio of tax revenues to output stationary.

We construct a competitive equilibrium with two types of assets: a one period
risk-free bond, and a consol. The government policy in the competitive equilibrium

is given by
Bt B B Bfonsol

Y, By
We set o = 2, and § = 0.99 for a quarterly calibration. The parameter A is set

= w.

such that the economy is consistent with stylized features of the distribution of tax
revenues and bond holdings among U.S. households. About half of U.S. households
directly or indirectly (i,e., through mutual funds, pension funds, and other institu-
tional investors) participate in the bond markets, and more than 90% of the total
tax revenue comes from the households with above median income. In light of these
observations, we set A = 0.5. The government policy parameters B = 60% is cali-
brated to the average of federal debt to GDP over the period 1960-2015, and w = 20%
is calibrated such that the Macaulay duration of the government portfolio equals 5
years. See Hilscher et al. (2014) for estimates of duration for U.S. public debt.®

We simulate data from the the competitive equilibrium to calibrate p, A, 3, T.
The matrix A is assumed to be diagonal with A,, As, and A, calibrated to match the
auto-correlations in output growth, non-transfer spending relative to output, and the
risk-free rate. The matrix ¥ is calibrated to match the variances and co-variances of
growth rate of output, non-transfer spending, and risky returns. To compute these
targets, risky returns are measured as the weighted-average of holding period returns
across b maturity bins (0-1 year, 1-2years, 2-3years, 3-4dyears, 4-5years, 5-10years,
10+ years), output is measured as real per capita GDP, and non-transfer spending is
measured as federal defense expenditures. Finally, the parameters for the tax function
T, i.e., 79, 1 are calibrated to match a ratio of federal tax revenues to GDP of 17%,
and an elasticity of tax revenues to output of 2.5. We set # = 0.95 and explore
sensitivity of our results to its value. The calibrated parameters and the targeted

moments are listed in Table II.

8The value of @ is obtained as a solution to

(1-w) <i) +@ (Ztt(14 ﬂ)ﬁt) =5.
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Table II: Baseline Parameters

Parameters Target Moments

Description Value Description Value

A 0.5 fraction of hh who own bonds 50%

A, 0.32 auto-corr of real gdp growth 0.32

Ay 0.92 auto-corr of risk-free rate 0.92

A, 0.99 auto-corr of defense 0.99
spending/gdp

By Dyr 0.0022, —0.33 std(gdp growth), cov(gdp 0.2%, —0.17
growth, returns)

Yaea,Xar 0.022,0.0 std(defense exp/gdp), 2%, -0.03
cov(defense exp/gdp, returns)

- 0.002 std(returns) 2.73%

To .34 agg. tax revenues/ gdp 17%

T -1.5 cov(gdp growth,tax revenues 2.5
growth) /var(gdp growth)

0 0.95 — -

Note: This table lists the parameter values for the baseline calibration and the targeted moments. Returns are
measured as the weighted average of excess holding period returns across maturities where weights are the portfolio
shares of the federal gross debt in those maturity bins.

5.2 Ramsey Planning Problem

We compute the Ramsey allocation for the calibrated economy. Following standard
steps as in Farhi (2010) and Bhandari et al. (2017b), we express the Ramsey planning
problem using two Bellman equations, one for t = 0, and one for ¢ > 0. We re scale
variables by dividing by Y; and denote the re-scaled variables using *. Define auxiliary
variable [S’t, qs as

A7 yva—-1 —«
Bt = Yt Ct Bt:

—a _consol
4y

N — «
Qt:Y; Ct

where B; is the market value of total debt and the ¢ is the price of the consol.

The re-scaled tax revenues satisfy

Y, QT Q
()Y = B (

T1
Y. Y}) = Toexp(T1vy),

Uy = (1 - 9) (Ut—l) — Gyt
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Using these auxiliary variables (and similarly 5’? ,l’;’f‘m”l for the holdings in the two

securities), the Euler equation for the rich agents with respect to the consol can be
expressed as

Qi-1 = BE1 [exp(gn,t — Qyt) ((éf) Bk 61t):| )

and their budget constraint as

Bt _ (&-1 _ Bfﬁ’}“l) exp (_gy,t) (éf)ia
PE1 [exp(gm — agy) (651)70[}
() ()" + )
BE.-1 [explgne — agy(s)) (@) + )]
@ (m LG — (1= N7 eXp(Tlvt)>

Aconsol
+B;7

It helps to describe the ¢ > 0 Ramsey plan recursively. Let V(B_,q_,v_.Y _.g,_,9,_, GA_)

be the value of the government entering with marginal-utility-adjusted debt, B =

c_~°B_, and marginal-utility-adjusted price of consol, q = ¢ ~%¢°"*%, the state

describing the rescaled tax revenues v_, and the exogenous states (Y_, Jy_9n_, G ) .

~

Lets_ = (g9y_,9y_,G_), we can then define a stationary value function for the Ram-
sey Planner as

~

45 N v B_aq_7Y_7g g _’G_
V(B_,q_,v_,s_) = ( (Y )I—Zzn : )

[(s)1—@ cB(g)l-« NN
=E, |exp(gy(s) + (1 — a)gy(s)) ([1 — ] (%) +p <L> + BV (B(s),q(s), 3))]

and the t > 0 Ramsey plan maximizes (18) by choosing {T(s), q(s), é(s), é(s), 3_6"”301}
subject to implementability constraints
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4 =BE._[exp(gn(s) — agy(s)) (@%(s) + (1 - 8)(s))] (19)
2 g) = 2 13 consol exp( y( )) R(S) “
Ble) =B = B g lexplga(s) - agy(s))7() 7]

5 1 exp(—gy(s)) (¢"(s)” +<i( )
tB_ BES_ [exp(gy(s )—a(gy( ) (e (s)~ ) +a(s))]
~a (AT (11— M7 eXp(Tw(S))> (20)
L= (1= N)é(s) + AT(s) + explg(s)) (21)
v(s) = (1 =0)v_ — gy(s) (22)

Solving numerically the ¢ > 0 Ramsey problem (19)-(22) is difficult with conven-
tional numerical techniques because the state space consists of 3 endogenous variables,
and 3 continuous shocks. To overcome this curse of dimensionality, we adopt numer-
ical methods developed in Evans (2014) and Bhandari et al. (2017a). The details are
relegated to the appendix. Given V', we can recover the Ramsey plan by solving a
standard optimization problem for the ¢ = 0 planner who takes initial conditions on

B

v V_,s_ and maximizes (18) subject to a time-0 budget and resource constraints.

5.3 Results

We present are two central findings: (1) the optimal government portfolio largely
issues the debt via a consol; and (2) there is little rebalancing in response to shocks.
Our findings are robust to the choice of Pareto weights, and so for our baseline we
set the p = 0.

We start by reporting the optimal Ramsey portfolioBcchOl as a function of the
initial debt B in Figure II. We see that fraction of total debt issued in the form of the

consol ranges between 75% and 95% as we vary the initial debt relative to (quarterly)

output between 25% and 125%. The intuition for this optimal portfolio comes forces
that work through formula (12). Returns induced by the optimal allocations retain
the patterns of returns in the data, i.e., they are volatile and largely uncorrelated
with shocks that drive primary deficits. This implies that the relative hedging term
is in expression (12) is small. We match the negative covariance of holding period

returns and output and this implies that the optimal hedging portfolio requires a long
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Figure II: Percentage of total debt held in the consol and one period risk-free bond
as a function of initial debt.

position of about 45% relative to output in the consol when initial debt is zero. As
we decrease By, the incremental portfolio mostly holds a short position in the consol
to hedge the rollover risk arising due to fluctuations in the short rate.

We can compare the U.S. maturity structure to that implied by the Ramsey portfo-
lio. The position in the consol can be replicated using an alternative market structure
where the government trades zero-coupon bonds all maturities. Proposition 1 makes
a sharp prediction for the maturity profile of the Ramsey portfolio: the fraction of
debt outstanding in the first period should be (1 — w") + (1 — B)wees° and then
the fractions outstanding in the rest of the periods are given by { (1 — B)wens3i };‘;2
. We compute the maturity profile for the U.S. debt as follows. For each month, we
use bond-level data from CRSP to group the unexpired treasury securities in bins
indexed by their Macaulay duration (in years) and compute the fraction in each bin.

We then take the sample average over the period 1960-2015. In Figure III, we plot
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Ramsey vs. U.S. debt profiles
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Figure III: Fraction of debt outstanding by maturity (years). For the U.S., we compute
outstanding debt by bins of (Macaulay) duration and average for the sample period

1960-2015. The Ramsey debt profile is constructed using a replicating portfolio of
zero-coupun bonds of all maturities.

the Ramsey profile and U.S. alongside each other. We see that the U.S. maturity
profile declines at a much slower rate than optimal. For instance, the fraction of of
debt outstanding in maturities 0-5 years is about 75%, and above 10 years is 13% in
the U.S. data where as the Ramsey portfolio would have those fractions at 30% and
60%, respectively.

In Figure IV, we examine the accuracy of the formula in equation (12), by com-
paring the Ramsey portfolio to that predicted by the formula. More precisely, we
simulate the Ramsey allocation to compute the ergodic covariances between returns,
output, primary surplus, and then plug them in equation (12). The difference be-
tween the optimal Ramsey portfolio and that predicted by equation (12) is informative

about the strength of the price effects. In our model economy, we find that the price
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Figure IV: Price effects measured as the difference between Ramsey optimal and
formula 12: amount of debt (relative to quarterly output) held in the consol.

effects are small and ignoring them would over estimate the holdings in the consol by
5%-10% of quarterly output. The Ramsey planner internalizes that issuing more debt
via a consol worsens the hedging avenues for the rich agents. Since these agents are
also the marginal investors, they demand a higher a compensation for the incremental
debt tempering the desire of the Ramsey planner to issue too much of its debt via
a consol. However, these effects are small and consistent with the empirical papers
that studied quantitative easing programs of the federal reserve (see section 4) which
document small effects on the bond prices through the portfolio rebalancing channel.

Next we turn to how the Ramsey planner rebalances portfolios in response to
shocks. In Figure V, we plot the impulse response of total debt, the fraction of debt
issued via the consol, and the transfers to a one standard deviation shock to ¢,, egand
€y- The optimal portfolio shows small rebalancing in response to all of these shocks.

For example, after a 0.2% permanent increase in output, the government reduces the
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debt-to-GDP ratio by slightly less than 1%, and the amount issued via the consol by
1.45%, keeping the maturity profile nearly unchanged. Transfers are smooth but not
constant because with two assets only, the planner cannot implement the complete

markets allocation.

Comparison to conventional RBC models We now study a special case of
our model that is comparable to the Ramsey models of Angeletos (2002) and Buera
and Nicolini (2004). These papers study optimal maturity in representative agent
complete market settings with conventional RBC calibration. A crucial difference in
our baseline is that asset returns are driven by discount factor shocks which are not
too correlated to short run output and expenditure shocks. To recover their setting
and outline the differences in a transparent way, we turn off the discount factor shocks
as well as the growth rate shocks to output. We then recompute the optimal Ramsey
portfolio and its rebalancing with respect to expenditure shocks.

In Figure VI, we overlay the optimal holding in the consol relative to (quarterly)
output for the RBC calibration on the graph for the baseline calibration. The optimal
portfolio in the RBC calibration is about 10 times the baseline with large short
positions in the consol and offsetting long positions in the one period risk-free asset. In
Figure VII, we plot impulse responses for the RBC calibration to study the rebalacing
after a one-standard deviation increase in non-transfer spending relative to output.
We see that the responses of total debt and the tax rate are similar across the two
parameter settings, but responses of portfolio holdings are about 25 times larger in
the RBC calibration.

Robustness The optimal portfolio (and its rebalancing) are robust to assumptions
on the Pareto weights and the relative mass of the poor agent. In Figure VIII, we
plot the optimal holdings in the consol as a fraction for initial debt (fixed at 60% of
annual output) for a range of 1, A. In all the cases, we find that fraction of debt issued
via a consol varies generally in the range of 80-100% of quarterly output. The logic
for this is simple. Both these parameters affect the optimal portfolio mainly though
the price effect term. As the mass of the poor agents increase, or the Pareto weight
on the rich agents increase, the price effect term is smaller, and hence the planner
increases the holdings in the risky consol. However, as discussed in section 3.2, these

effects are bounded and affect the optimal portfolio only through second order terms.
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Figure V: Impulse response functions under baseline calibration to a one standard
deviation shock to €,, €g, €, respectively. Units on the y-axis are in percentage points.
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Comparison to RBC calibrations
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Figure VI: Portfolio shares for the baseline calibration (solid lines) and the RBC
calibration (dashed lines)
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Figure VII: Impulse response functions under the RBC calibration to a one standard
deviation shock to €5 . Units on the y-axis are in percentage points.
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Figure VIII: Comparative statics with respect to the relative mass () and the Pareto
weights p of the poor agents. The initial debt is fixed at 60% annual output as we
vary A, j.
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6 Conclusion

We develop a novel class of perturbations to study the optimal composition of a gov-
ernment’s portfolio. We derive a formula for the optimal portfolio and show that it
can be expressed in terms of estimable “sufficient statistics”. We use U.S. data to
calculate the key moments required by our theory and show that they imply that
the optimal portfolio is approximately geometrically declining in bonds of different
maturities and requires little rebalancing in response to aggregate shocks. Our opti-
mal portfolio differs from portfolios prescribed by existing models often used in the
business cycle literature and also from those adopted by the U.S. Treasury. The key
normative differences are driven by counterfactual asset pricing implications of the
standard models. A natural extension to our exercise is to allow for inflation and
study joint portfolio and monetary policy in the direction of Lustig et al. (2008). We

leave this for future work.
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